library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub maspypy/library

:question: geo/outcircle.hpp

Depends on

Required by

Verified with

Code

#pragma once
#include "geo/base.hpp"
#include "geo/triangle_area.hpp"

template <typename REAL, typename T>
Circle<REAL> outcircle(Point<T> A, Point<T> B, Point<T> C) {
  REAL b1 = B.x - A.x, b2 = B.y - A.y;
  REAL c1 = C.x - A.x, c2 = C.y - A.y;
  REAL bb = (b1 * b1 + b2 * b2) / 2;
  REAL cc = (c1 * c1 + c2 * c2) / 2;

  REAL det = b1 * c2 - b2 * c1;
  REAL x = (bb * c2 - b2 * cc) / det;
  REAL y = (b1 * cc - bb * c1) / det;
  REAL r = sqrt(x * x + y * y);
  x += A.x, y += A.y;
  return Circle<REAL>(x, y, r);
}

// ABC の外接円に対して内外どちらにあるか
// 中:1, 境界:0, 外:-1
// 座標の 4 乗がオーバーフローしないようにする
template <typename T>
int outcircle_side(Point<T> A, Point<T> B, Point<T> C, Point<T> p) {
  T d = (B - A).det(C - A);
  assert(d != 0);
  if (d < 0) swap(B, C);
  array<Point<T>, 3> pts = {A, B, C};
  array<array<T, 3>, 3> mat;
  FOR(i, 3) {
    T dx = pts[i].x - p.x, dy = pts[i].y - p.y;
    mat[i][0] = dx, mat[i][1] = dy, mat[i][2] = dx * dx + dy * dy;
  }
  T det = 0;
  det += mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]);
  det += mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]);
  det += mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]);
  if (det == 0) return 0;
  return (det > 0 ? 1 : -1);
}
#line 2 "geo/base.hpp"
template <typename T>
struct Point {
  T x, y;

  Point() : x(0), y(0) {}

  template <typename A, typename B>
  Point(A x, B y) : x(x), y(y) {}

  template <typename A, typename B>
  Point(pair<A, B> p) : x(p.fi), y(p.se) {}

  Point operator+=(const Point p) {
    x += p.x, y += p.y;
    return *this;
  }
  Point operator-=(const Point p) {
    x -= p.x, y -= p.y;
    return *this;
  }
  Point operator+(Point p) const { return {x + p.x, y + p.y}; }
  Point operator-(Point p) const { return {x - p.x, y - p.y}; }
  bool operator==(Point p) const { return x == p.x && y == p.y; }
  bool operator!=(Point p) const { return x != p.x || y != p.y; }
  Point operator-() const { return {-x, -y}; }
  Point operator*(T t) const { return {x * t, y * t}; }
  Point operator/(T t) const { return {x / t, y / t}; }

  bool operator<(Point p) const {
    if (x != p.x) return x < p.x;
    return y < p.y;
  }
  T dot(const Point& other) const { return x * other.x + y * other.y; }
  T det(const Point& other) const { return x * other.y - y * other.x; }

  double norm() { return sqrtl(x * x + y * y); }
  double angle() { return atan2(y, x); }

  Point rotate(double theta) {
    static_assert(!is_integral<T>::value);
    double c = cos(theta), s = sin(theta);
    return Point{c * x - s * y, s * x + c * y};
  }
  Point rot90(bool ccw) { return (ccw ? Point{-y, x} : Point{y, -x}); }
};

#ifdef FASTIO
template <typename T>
void rd(Point<T>& p) {
  fastio::rd(p.x), fastio::rd(p.y);
}
template <typename T>
void wt(Point<T>& p) {
  fastio::wt(p.x);
  fastio::wt(' ');
  fastio::wt(p.y);
}
#endif

// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
  T x = (B - A).det(C - A);
  if (x > 0) return 1;
  if (x < 0) return -1;
  return 0;
}

template <typename REAL, typename T, typename U>
REAL dist(Point<T> A, Point<U> B) {
  REAL dx = REAL(A.x) - REAL(B.x);
  REAL dy = REAL(A.y) - REAL(B.y);
  return sqrt(dx * dx + dy * dy);
}

// ax+by+c
template <typename T>
struct Line {
  T a, b, c;

  Line(T a, T b, T c) : a(a), b(b), c(c) {}
  Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; }
  Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}

  template <typename U>
  U eval(Point<U> P) {
    return a * P.x + b * P.y + c;
  }

  template <typename U>
  T eval(U x, U y) {
    return a * x + b * y + c;
  }

  // 同じ直線が同じ a,b,c で表現されるようにする
  void normalize() {
    static_assert(is_same_v<T, int> || is_same_v<T, long long>);
    T g = gcd(gcd(abs(a), abs(b)), abs(c));
    a /= g, b /= g, c /= g;
    if (b < 0) { a = -a, b = -b, c = -c; }
    if (b == 0 && a < 0) { a = -a, b = -b, c = -c; }
  }

  bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
  bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};

template <typename T>
struct Segment {
  Point<T> A, B;

  Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
  Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}

  bool contain(Point<T> C) {
    T det = (C - A).det(B - A);
    if (det != 0) return 0;
    return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
  }

  Line<T> to_Line() { return Line(A, B); }
};

template <typename REAL>
struct Circle {
  Point<REAL> O;
  REAL r;
  Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
  Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
  template <typename T>
  bool contain(Point<T> p) {
    REAL dx = p.x - O.x, dy = p.y - O.y;
    return dx * dx + dy * dy <= r * r;
  }
};
#line 1 "geo/triangle_area.hpp"
template <typename REAL, typename T>
REAL triangle_area(Point<T> A, Point<T> B, Point<T> C) {
  return abs((B - A).det(C - A)) * 0.5;
}
#line 4 "geo/outcircle.hpp"

template <typename REAL, typename T>
Circle<REAL> outcircle(Point<T> A, Point<T> B, Point<T> C) {
  REAL b1 = B.x - A.x, b2 = B.y - A.y;
  REAL c1 = C.x - A.x, c2 = C.y - A.y;
  REAL bb = (b1 * b1 + b2 * b2) / 2;
  REAL cc = (c1 * c1 + c2 * c2) / 2;

  REAL det = b1 * c2 - b2 * c1;
  REAL x = (bb * c2 - b2 * cc) / det;
  REAL y = (b1 * cc - bb * c1) / det;
  REAL r = sqrt(x * x + y * y);
  x += A.x, y += A.y;
  return Circle<REAL>(x, y, r);
}

// ABC の外接円に対して内外どちらにあるか
// 中:1, 境界:0, 外:-1
// 座標の 4 乗がオーバーフローしないようにする
template <typename T>
int outcircle_side(Point<T> A, Point<T> B, Point<T> C, Point<T> p) {
  T d = (B - A).det(C - A);
  assert(d != 0);
  if (d < 0) swap(B, C);
  array<Point<T>, 3> pts = {A, B, C};
  array<array<T, 3>, 3> mat;
  FOR(i, 3) {
    T dx = pts[i].x - p.x, dy = pts[i].y - p.y;
    mat[i][0] = dx, mat[i][1] = dy, mat[i][2] = dx * dx + dy * dy;
  }
  T det = 0;
  det += mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]);
  det += mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]);
  det += mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]);
  if (det == 0) return 0;
  return (det > 0 ? 1 : -1);
}
Back to top page