This documentation is automatically generated by online-judge-tools/verification-helper
#include "geo/manhattan_mst.hpp"
#include "graph/base.hpp"
#include "ds/unionfind/unionfind.hpp"
// 最小全域木を作るので、特に各点からの最近点をとる目的で使うこともできる
template <typename T>
Graph<T, 0> manhattan_mst(vc<pair<T, T>>& XY) {
int N = XY.size();
vc<tuple<T, int, int>> dat;
dat.reserve(4 * N);
vc<int> idx(N);
iota(all(idx), 0);
FOR(a, 2) {
for (auto&& [x, y]: XY) x = -x;
FOR(b, 2) {
for (auto&& [x, y]: XY) swap(x, y);
sort(all(idx), [&](const int& i, const int& j) -> bool {
return XY[i].fi + XY[i].se < XY[j].fi + XY[j].se;
});
map<T, int> MP;
for (const int i: idx) {
auto& [x, y] = XY[i];
for (auto it = MP.lower_bound(-y); it != MP.end(); it = MP.erase(it)) {
const int j = it->se;
auto& [xj, yj] = XY[j];
const int dx = x - xj;
const int dy = y - yj;
if (dy > dx) break;
dat.eb(dx + dy, i, j);
}
MP[-y] = i;
}
}
}
sort(all(dat));
Graph<T, 0> G(N);
UnionFind uf(N);
for (auto&& [cost, i, j]: dat) {
if (uf.merge(i, j)) G.add(i, j, cost);
}
G.build();
return G;
}
#line 2 "graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
if (len(used_e) != M) used_e.assign(M, 0);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "ds/unionfind/unionfind.hpp"
struct UnionFind {
int n, n_comp;
vc<int> dat; // par or (-size)
UnionFind(int n = 0) { build(n); }
void build(int m) {
n = m, n_comp = m;
dat.assign(n, -1);
}
void reset() { build(n); }
int operator[](int x) {
while (dat[x] >= 0) {
int pp = dat[dat[x]];
if (pp < 0) { return dat[x]; }
x = dat[x] = pp;
}
return x;
}
ll size(int x) {
x = (*this)[x];
return -dat[x];
}
bool merge(int x, int y) {
x = (*this)[x], y = (*this)[y];
if (x == y) return false;
if (-dat[x] < -dat[y]) swap(x, y);
dat[x] += dat[y], dat[y] = x, n_comp--;
return true;
}
};
#line 3 "geo/manhattan_mst.hpp"
// 最小全域木を作るので、特に各点からの最近点をとる目的で使うこともできる
template <typename T>
Graph<T, 0> manhattan_mst(vc<pair<T, T>>& XY) {
int N = XY.size();
vc<tuple<T, int, int>> dat;
dat.reserve(4 * N);
vc<int> idx(N);
iota(all(idx), 0);
FOR(a, 2) {
for (auto&& [x, y]: XY) x = -x;
FOR(b, 2) {
for (auto&& [x, y]: XY) swap(x, y);
sort(all(idx), [&](const int& i, const int& j) -> bool {
return XY[i].fi + XY[i].se < XY[j].fi + XY[j].se;
});
map<T, int> MP;
for (const int i: idx) {
auto& [x, y] = XY[i];
for (auto it = MP.lower_bound(-y); it != MP.end(); it = MP.erase(it)) {
const int j = it->se;
auto& [xj, yj] = XY[j];
const int dx = x - xj;
const int dy = y - yj;
if (dy > dx) break;
dat.eb(dx + dy, i, j);
}
MP[-y] = i;
}
}
}
sort(all(dat));
Graph<T, 0> G(N);
UnionFind uf(N);
for (auto&& [cost, i, j]: dat) {
if (uf.merge(i, j)) G.add(i, j, cost);
}
G.build();
return G;
}