This documentation is automatically generated by online-judge-tools/verification-helper
#include "geo/lower_convexhull_segtree.hpp"// ALLOW_180=true のときに同一座標の点があると壊れる気がする
template <typename T, bool ALLOW_180 = false>
struct Lower_ConvexHull_SegTree {
struct P {
T x, y;
P() : x(0), y(0) {}
P(T x, T y) : x(x), y(y) {}
P operator+=(const P p) {
x += p.x, y += p.y;
return *this;
}
P operator-=(const P p) {
x -= p.x, y -= p.y;
return *this;
}
P operator+(P p) const { return {x + p.x, y + p.y}; }
P operator-(P p) const { return {x - p.x, y - p.y}; }
bool operator<(P p) const { return (x != p.x ? x < p.x : y < p.y); }
bool operator==(P p) const { return (x == p.x && y == p.y); }
i128 dot(T a, T b) { return a * x + b * y; }
};
struct Data {
int L, R;
T max_x;
bool exist() { return L != -1; };
};
int n, log, size;
vc<P> point;
vc<Data> dat;
Lower_ConvexHull_SegTree() {}
Lower_ConvexHull_SegTree(int n) { build(n); }
template <typename F>
Lower_ConvexHull_SegTree(int n, F f) {
build(n, f);
}
void build(int m) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
point.assign(m, P(0, 0));
dat.assign(2 * size, Data(-1, -1, 0));
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
point.assign(m, P(0, 0));
dat.assign(2 * size, Data(-1, -1, 0));
FOR(i, m) {
auto [exist, x, y] = f(i);
point[i] = P(x, y);
dat[size + i] = (exist ? Data(i, i, x) : Data(-1, -1, x));
}
FOR_R(i, 1, size) update(i);
}
void set(int i, bool exist, T x, T y) {
point[i] = {x, y};
dat[size + i] = (exist ? Data(i, i, x) : Data(-1, -1, x));
i += size;
while (i > 1) i /= 2, update(i);
}
// 中:1, 境界:0, 外:-1
int side(T x, T y) {
if (!dat[1].exist) return -1;
P a(x, y);
int p = 1;
while (1) {
down_while_trivial(p);
P L = point[dat[p].L], R = point[dat[p].R];
if (a < L) { p = 2 * p + 0; }
elif (a == L) { return 0; }
elif (L < a && a < R) { return -ccw(L, a, R); }
elif (R == a) { return 0; }
else {
p = 2 * p + 1;
}
if (p >= 2 * size) return -1;
}
}
i128 min_dot(T a, T b) { return min_dot_at(1, a, b); }
i128 min_dot(int L, int R, T a, T b) {
L += size, R += size;
i128 ANS = infty<i128>;
while (L < R) {
if (L & 1) chmin(ANS, min_dot_at(L++, a, b));
if (R & 1) chmin(ANS, min_dot_at(--R, a, b));
L /= 2, R /= 2;
}
return ANS;
}
// 同一座標の点があると unique されたりされなかったりするはず?
vc<int> get_hull() {
vc<int> res;
// closed range
auto dfs = [&](auto& dfs, int p, int lo, int hi) -> void {
if (!dat[p].exist() || hi < lo) return;
down_while_trivial(p);
if (size <= p) {
res.eb(p - size);
return;
}
if (!(dat[p].L < hi)) return dfs(dfs, 2 * p + 0, lo, hi);
if (!(lo < dat[p].R)) return dfs(dfs, 2 * p + 1, lo, hi);
dfs(dfs, 2 * p + 0, lo, dat[p].L);
dfs(dfs, 2 * p + 1, dat[p].R, hi);
};
dfs(dfs, 1, 0, n - 1);
return res;
}
private:
// A,B,C は昇順. 同一座標の点はタイブレイクする.
int ccw(P A, P B, P C) {
auto [x1, y1] = B - A;
auto [x2, y2] = C - B;
if (x1 == 0) y1 = 1;
if (x2 == 0) y2 = 1;
i128 d = i128(x1) * y2 - i128(x2) * y1;
return (d != 0 ? (d > 0 ? 1 : -1) : 0);
}
inline void down_while_trivial(int& p) {
while (p < size) {
if (!dat[2 * p + 0].exist()) p = 2 * p + 1;
elif (!dat[2 * p + 1].exist()) p = 2 * p + 0;
else return;
}
}
void update(int i) {
assert(1 <= i && i < size);
if (!dat[2 * i + 0].exist()) { dat[i] = dat[2 * i + 1]; }
elif (!dat[2 * i + 1].exist()) { dat[i] = dat[2 * i + 0]; }
else {
dat[i].max_x = dat[2 * i + 1].max_x;
tie(dat[i].L, dat[i].R) = find_bridge(i);
}
}
pair<int, int> find_bridge(int i) {
int p = 2 * i + 0, q = 2 * i + 1;
while (1) {
down_while_trivial(p), down_while_trivial(q);
if (size <= p && size <= q) break;
P A = point[dat[p].L], B = point[dat[p].R];
P C = point[dat[q].L], D = point[dat[q].R];
constexpr int ccw_thresh = (ALLOW_180 ? 0 : 1);
if (p >= size) {
q = (ccw(B, C, D) < ccw_thresh ? 2 * q + 1 : 2 * q + 0);
}
elif (q >= size) {
p = (ccw(A, B, C) < ccw_thresh ? 2 * p + 0 : 2 * p + 1);
}
elif (ccw(A, B, C) < ccw_thresh) { p = 2 * p + 0; }
elif (ccw(B, C, D) < ccw_thresh) { q = 2 * q + 1; }
else {
ll x1 = A.x, x2 = B.x, x3 = C.x, x4 = D.x;
ll y1 = A.y, y2 = B.y, y3 = C.y, y4 = D.y;
ll num
= (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - x4 * y3);
ll den = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
if (den == 0 || num <= dat[p].max_x * den)
p = 2 * p + 1;
else
q = 2 * q + 0;
}
}
return {p - size, q - size};
}
i128 min_dot_at(int p, T a, T b) {
assert(b >= 0);
if (!dat[p].exist) return infty<i128>;
while (1) {
down_while_trivial(p);
if (size <= p) break;
i128 x1 = point[dat[p].L].dot(a, b), x2 = point[dat[p].R].dot(a, b);
if (x1 <= x2) p = 2 * p + 0;
if (x1 > x2) p = 2 * p + 1;
}
return dat[p].L.dot(a, b);
}
};#line 1 "geo/lower_convexhull_segtree.hpp"
// ALLOW_180=true のときに同一座標の点があると壊れる気がする
template <typename T, bool ALLOW_180 = false>
struct Lower_ConvexHull_SegTree {
struct P {
T x, y;
P() : x(0), y(0) {}
P(T x, T y) : x(x), y(y) {}
P operator+=(const P p) {
x += p.x, y += p.y;
return *this;
}
P operator-=(const P p) {
x -= p.x, y -= p.y;
return *this;
}
P operator+(P p) const { return {x + p.x, y + p.y}; }
P operator-(P p) const { return {x - p.x, y - p.y}; }
bool operator<(P p) const { return (x != p.x ? x < p.x : y < p.y); }
bool operator==(P p) const { return (x == p.x && y == p.y); }
i128 dot(T a, T b) { return a * x + b * y; }
};
struct Data {
int L, R;
T max_x;
bool exist() { return L != -1; };
};
int n, log, size;
vc<P> point;
vc<Data> dat;
Lower_ConvexHull_SegTree() {}
Lower_ConvexHull_SegTree(int n) { build(n); }
template <typename F>
Lower_ConvexHull_SegTree(int n, F f) {
build(n, f);
}
void build(int m) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
point.assign(m, P(0, 0));
dat.assign(2 * size, Data(-1, -1, 0));
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
point.assign(m, P(0, 0));
dat.assign(2 * size, Data(-1, -1, 0));
FOR(i, m) {
auto [exist, x, y] = f(i);
point[i] = P(x, y);
dat[size + i] = (exist ? Data(i, i, x) : Data(-1, -1, x));
}
FOR_R(i, 1, size) update(i);
}
void set(int i, bool exist, T x, T y) {
point[i] = {x, y};
dat[size + i] = (exist ? Data(i, i, x) : Data(-1, -1, x));
i += size;
while (i > 1) i /= 2, update(i);
}
// 中:1, 境界:0, 外:-1
int side(T x, T y) {
if (!dat[1].exist) return -1;
P a(x, y);
int p = 1;
while (1) {
down_while_trivial(p);
P L = point[dat[p].L], R = point[dat[p].R];
if (a < L) { p = 2 * p + 0; }
elif (a == L) { return 0; }
elif (L < a && a < R) { return -ccw(L, a, R); }
elif (R == a) { return 0; }
else {
p = 2 * p + 1;
}
if (p >= 2 * size) return -1;
}
}
i128 min_dot(T a, T b) { return min_dot_at(1, a, b); }
i128 min_dot(int L, int R, T a, T b) {
L += size, R += size;
i128 ANS = infty<i128>;
while (L < R) {
if (L & 1) chmin(ANS, min_dot_at(L++, a, b));
if (R & 1) chmin(ANS, min_dot_at(--R, a, b));
L /= 2, R /= 2;
}
return ANS;
}
// 同一座標の点があると unique されたりされなかったりするはず?
vc<int> get_hull() {
vc<int> res;
// closed range
auto dfs = [&](auto& dfs, int p, int lo, int hi) -> void {
if (!dat[p].exist() || hi < lo) return;
down_while_trivial(p);
if (size <= p) {
res.eb(p - size);
return;
}
if (!(dat[p].L < hi)) return dfs(dfs, 2 * p + 0, lo, hi);
if (!(lo < dat[p].R)) return dfs(dfs, 2 * p + 1, lo, hi);
dfs(dfs, 2 * p + 0, lo, dat[p].L);
dfs(dfs, 2 * p + 1, dat[p].R, hi);
};
dfs(dfs, 1, 0, n - 1);
return res;
}
private:
// A,B,C は昇順. 同一座標の点はタイブレイクする.
int ccw(P A, P B, P C) {
auto [x1, y1] = B - A;
auto [x2, y2] = C - B;
if (x1 == 0) y1 = 1;
if (x2 == 0) y2 = 1;
i128 d = i128(x1) * y2 - i128(x2) * y1;
return (d != 0 ? (d > 0 ? 1 : -1) : 0);
}
inline void down_while_trivial(int& p) {
while (p < size) {
if (!dat[2 * p + 0].exist()) p = 2 * p + 1;
elif (!dat[2 * p + 1].exist()) p = 2 * p + 0;
else return;
}
}
void update(int i) {
assert(1 <= i && i < size);
if (!dat[2 * i + 0].exist()) { dat[i] = dat[2 * i + 1]; }
elif (!dat[2 * i + 1].exist()) { dat[i] = dat[2 * i + 0]; }
else {
dat[i].max_x = dat[2 * i + 1].max_x;
tie(dat[i].L, dat[i].R) = find_bridge(i);
}
}
pair<int, int> find_bridge(int i) {
int p = 2 * i + 0, q = 2 * i + 1;
while (1) {
down_while_trivial(p), down_while_trivial(q);
if (size <= p && size <= q) break;
P A = point[dat[p].L], B = point[dat[p].R];
P C = point[dat[q].L], D = point[dat[q].R];
constexpr int ccw_thresh = (ALLOW_180 ? 0 : 1);
if (p >= size) {
q = (ccw(B, C, D) < ccw_thresh ? 2 * q + 1 : 2 * q + 0);
}
elif (q >= size) {
p = (ccw(A, B, C) < ccw_thresh ? 2 * p + 0 : 2 * p + 1);
}
elif (ccw(A, B, C) < ccw_thresh) { p = 2 * p + 0; }
elif (ccw(B, C, D) < ccw_thresh) { q = 2 * q + 1; }
else {
ll x1 = A.x, x2 = B.x, x3 = C.x, x4 = D.x;
ll y1 = A.y, y2 = B.y, y3 = C.y, y4 = D.y;
ll num
= (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - x4 * y3);
ll den = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
if (den == 0 || num <= dat[p].max_x * den)
p = 2 * p + 1;
else
q = 2 * q + 0;
}
}
return {p - size, q - size};
}
i128 min_dot_at(int p, T a, T b) {
assert(b >= 0);
if (!dat[p].exist) return infty<i128>;
while (1) {
down_while_trivial(p);
if (size <= p) break;
i128 x1 = point[dat[p].L].dot(a, b), x2 = point[dat[p].R].dot(a, b);
if (x1 <= x2) p = 2 * p + 0;
if (x1 > x2) p = 2 * p + 1;
}
return dat[p].L.dot(a, b);
}
};