This documentation is automatically generated by online-judge-tools/verification-helper
#include "geo/incremental_convexhull.hpp"
#include "geo/base.hpp"
// 下側凸包
template <typename T, bool strict = true>
struct IncrementalConvexHull_Lower {
using P = Point<T>;
set<P> S;
IncrementalConvexHull_Lower() {}
int size() { return len(S); }
template <typename ADD_V, typename RM_V, typename ADD_E, typename RM_E>
void add(Point<T> p, ADD_V add_v, RM_V rm_v, ADD_E add_e, RM_E rm_e) {
int s = side(p);
if (strict && s >= 0) return;
if (!strict && s > 0) return;
// 点追加
add_v(p);
S.insert(p);
vc<P> left;
{
auto it = S.find(p);
while (it != S.begin()) {
--it;
if (left.empty()) {
left.eb(*it);
continue;
}
auto a = *it;
auto b = left.back();
T det = (b - a).det(p - a);
if (strict && det > 0) break;
if (!strict && det >= 0) break;
left.eb(a);
}
}
vc<P> right;
{
auto it = S.find(p);
while (1) {
++it;
if (it == S.end()) break;
if (right.empty()) {
right.eb(*it);
continue;
}
auto a = right.back();
auto b = *it;
T det = (a - p).det(b - p);
if (strict && det > 0) break;
if (!strict && det >= 0) break;
right.eb(b);
}
}
// 点削除
if (len(left) > 1) { S.erase(next(S.find(left.back())), S.find(p)); }
if (len(right) > 1) { S.erase(next(S.find(p)), S.find(right.back())); }
FOR(i, len(left) - 1) rm_v(left[i]);
FOR(i, len(right) - 1) rm_v(right[i]);
// 辺削除
if (len(left) && len(right)) {
auto a = left[0], b = right[0];
rm_e(a, b);
}
FOR(i, len(left) - 1) {
auto a = left[i + 1], b = left[i];
rm_e(a, b);
}
FOR(i, len(right) - 1) {
auto a = right[i], b = right[i + 1];
rm_e(a, b);
}
// 辺追加
if (len(left)) { add_e(left.back(), p); }
if (len(right)) { add_e(p, right.back()); }
}
// 中:1, 境界:0, 外:-1
int side(Point<T> p) {
auto r = S.lower_bound(p);
if (r == S.begin()) {
// 全部 p 以上
if (len(S) && (*r) == p) return 0;
return -1;
}
if (r == S.end()) {
// p は max より大きい
return -1;
}
auto l = prev(r);
auto p1 = *l, p2 = *r;
T det = (p - p1).det(p2 - p1);
if (det == 0) return 0;
return (det > 0 ? -1 : 1);
}
};
template <typename T, bool strict = true>
struct Incremental_ConvexHull {
using P = Point<T>;
IncrementalConvexHull_Lower<T, strict> LOWER, UPPER;
int cnt_E;
T det_sum;
bool is_empty;
Incremental_ConvexHull() : cnt_E(0), det_sum(0), is_empty(1) {}
int size() { return cnt_E; }
bool empty() { return is_empty; }
template <typename REAL>
REAL area() {
return det_sum * 0.5;
}
T area_2() { return det_sum; }
template <typename ADD_V, typename RM_V, typename ADD_E, typename RM_E>
void add(Point<T> p, ADD_V add_v, RM_V rm_v, ADD_E add_e, RM_E rm_e) {
is_empty = 0;
LOWER.add(
p, add_v, rm_v,
[&](Point<T> a, Point<T> b) {
add_e(a, b);
++cnt_E;
det_sum += a.det(b);
},
[&](Point<T> a, Point<T> b) {
rm_e(a, b);
--cnt_E;
det_sum -= a.det(b);
});
UPPER.add(
-p, [&](Point<T> p) { add_v(-p); }, [&](Point<T> p) { rm_v(-p); },
[&](Point<T> a, Point<T> b) {
add_e(-a, -b);
++cnt_E;
det_sum += a.det(b);
},
[&](Point<T> a, Point<T> b) {
rm_e(-a, -b);
--cnt_E;
det_sum -= a.det(b);
});
}
void add(Point<T> p) {
add(
p, [](Point<T> p) {}, [](Point<T> p) {}, [](Point<T> s, Point<T> t) {},
[](Point<T> s, Point<T> t) {});
}
// 中:1、境界:0、外:-1
int side(Point<T> p) {
int a = LOWER.side(p);
int b = UPPER.side(-p);
if (a == 0 || b == 0) return 0;
return min(a, b);
}
};
#line 2 "geo/base.hpp"
template <typename T>
struct Point {
T x, y;
Point() : x(0), y(0) {}
template <typename A, typename B>
Point(A x, B y) : x(x), y(y) {}
template <typename A, typename B>
Point(pair<A, B> p) : x(p.fi), y(p.se) {}
Point operator+(Point p) const { return {x + p.x, y + p.y}; }
Point operator-(Point p) const { return {x - p.x, y - p.y}; }
bool operator==(Point p) const { return x == p.x && y == p.y; }
bool operator!=(Point p) const { return x != p.x || y != p.y; }
Point operator-() const { return {-x, -y}; }
Point operator*(T t) const { return {x * t, y * t}; }
Point operator/(T t) const { return {x / t, y / t}; }
bool operator<(Point p) const {
if (x != p.x) return x < p.x;
return y < p.y;
}
T dot(Point other) { return x * other.x + y * other.y; }
T det(Point other) { return x * other.y - y * other.x; }
double norm() { return sqrtl(x * x + y * y); }
double angle() { return atan2(y, x); }
Point rotate(double theta) {
static_assert(!is_integral<T>::value);
double c = cos(theta), s = sin(theta);
return Point{c * x - s * y, s * x + c * y};
}
};
#ifdef FASTIO
template <typename T>
void rd(Point<T>& p) {
fastio::rd(p.x), fastio::rd(p.y);
}
template <typename T>
void wt(Point<T>& p) {
fastio::wt(p.x);
fastio::wt(' ');
fastio::wt(p.y);
}
#endif
// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
T x = (B - A).det(C - A);
if (x > 0) return 1;
if (x < 0) return -1;
return 0;
}
template <typename REAL, typename T>
REAL dist(Point<T> A, Point<T> B) {
A = A - B;
T p = A.dot(A);
return sqrt(REAL(p));
}
template <typename T>
struct Line {
T a, b, c;
Line(T a, T b, T c) : a(a), b(b), c(c) {}
Line(Point<T> A, Point<T> B) {
a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x;
}
Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}
template <typename U>
U eval(Point<U> P) {
return a * P.x + b * P.y + c;
}
template <typename U>
T eval(U x, U y) {
return a * x + b * y + c;
}
// 同じ直線が同じ a,b,c で表現されるようにする
void normalize() {
static_assert(is_same_v<T, int> || is_same_v<T, long long>);
T g = gcd(gcd(abs(a), abs(b)), abs(c));
a /= g, b /= g, c /= g;
if (b < 0) { a = -a, b = -b, c = -c; }
if (b == 0 && a < 0) { a = -a, b = -b, c = -c; }
}
bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};
template <typename T>
struct Segment {
Point<T> A, B;
Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
Segment(T x1, T y1, T x2, T y2)
: Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}
bool contain(Point<T> C) {
static_assert(is_integral<T>::value);
T det = (C - A).det(B - A);
if (det != 0) return 0;
return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
}
Line<T> to_Line() { return Line(A, B); }
};
template <typename REAL>
struct Circle {
Point<REAL> O;
REAL r;
Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
template <typename T>
bool contain(Point<T> p) {
REAL dx = p.x - O.x, dy = p.y - O.y;
return dx * dx + dy * dy <= r * r;
}
};
template <typename T>
struct Polygon {
vc<Point<T>> points;
T a;
template <typename A, typename B>
Polygon(vc<pair<A, B>> pairs) {
for (auto&& [a, b]: pairs) points.eb(Point<T>(a, b));
build();
}
Polygon(vc<Point<T>> points) : points(points) { build(); }
int size() { return len(points); }
template <typename REAL>
REAL area() {
return a * 0.5;
}
template <enable_if_t<is_integral<T>::value, int> = 0>
T area_2() {
return a;
}
bool is_convex() {
FOR(j, len(points)) {
int i = (j == 0 ? len(points) - 1 : j - 1);
int k = (j == len(points) - 1 ? 0 : j + 1);
if ((points[j] - points[i]).det(points[k] - points[j]) < 0) return false;
}
return true;
}
private:
void build() {
a = 0;
FOR(i, len(points)) {
int j = (i + 1 == len(points) ? 0 : i + 1);
a += points[i].det(points[j]);
}
if (a < 0) {
a = -a;
reverse(all(points));
}
}
};
#line 2 "geo/incremental_convexhull.hpp"
// 下側凸包
template <typename T, bool strict = true>
struct IncrementalConvexHull_Lower {
using P = Point<T>;
set<P> S;
IncrementalConvexHull_Lower() {}
int size() { return len(S); }
template <typename ADD_V, typename RM_V, typename ADD_E, typename RM_E>
void add(Point<T> p, ADD_V add_v, RM_V rm_v, ADD_E add_e, RM_E rm_e) {
int s = side(p);
if (strict && s >= 0) return;
if (!strict && s > 0) return;
// 点追加
add_v(p);
S.insert(p);
vc<P> left;
{
auto it = S.find(p);
while (it != S.begin()) {
--it;
if (left.empty()) {
left.eb(*it);
continue;
}
auto a = *it;
auto b = left.back();
T det = (b - a).det(p - a);
if (strict && det > 0) break;
if (!strict && det >= 0) break;
left.eb(a);
}
}
vc<P> right;
{
auto it = S.find(p);
while (1) {
++it;
if (it == S.end()) break;
if (right.empty()) {
right.eb(*it);
continue;
}
auto a = right.back();
auto b = *it;
T det = (a - p).det(b - p);
if (strict && det > 0) break;
if (!strict && det >= 0) break;
right.eb(b);
}
}
// 点削除
if (len(left) > 1) { S.erase(next(S.find(left.back())), S.find(p)); }
if (len(right) > 1) { S.erase(next(S.find(p)), S.find(right.back())); }
FOR(i, len(left) - 1) rm_v(left[i]);
FOR(i, len(right) - 1) rm_v(right[i]);
// 辺削除
if (len(left) && len(right)) {
auto a = left[0], b = right[0];
rm_e(a, b);
}
FOR(i, len(left) - 1) {
auto a = left[i + 1], b = left[i];
rm_e(a, b);
}
FOR(i, len(right) - 1) {
auto a = right[i], b = right[i + 1];
rm_e(a, b);
}
// 辺追加
if (len(left)) { add_e(left.back(), p); }
if (len(right)) { add_e(p, right.back()); }
}
// 中:1, 境界:0, 外:-1
int side(Point<T> p) {
auto r = S.lower_bound(p);
if (r == S.begin()) {
// 全部 p 以上
if (len(S) && (*r) == p) return 0;
return -1;
}
if (r == S.end()) {
// p は max より大きい
return -1;
}
auto l = prev(r);
auto p1 = *l, p2 = *r;
T det = (p - p1).det(p2 - p1);
if (det == 0) return 0;
return (det > 0 ? -1 : 1);
}
};
template <typename T, bool strict = true>
struct Incremental_ConvexHull {
using P = Point<T>;
IncrementalConvexHull_Lower<T, strict> LOWER, UPPER;
int cnt_E;
T det_sum;
bool is_empty;
Incremental_ConvexHull() : cnt_E(0), det_sum(0), is_empty(1) {}
int size() { return cnt_E; }
bool empty() { return is_empty; }
template <typename REAL>
REAL area() {
return det_sum * 0.5;
}
T area_2() { return det_sum; }
template <typename ADD_V, typename RM_V, typename ADD_E, typename RM_E>
void add(Point<T> p, ADD_V add_v, RM_V rm_v, ADD_E add_e, RM_E rm_e) {
is_empty = 0;
LOWER.add(
p, add_v, rm_v,
[&](Point<T> a, Point<T> b) {
add_e(a, b);
++cnt_E;
det_sum += a.det(b);
},
[&](Point<T> a, Point<T> b) {
rm_e(a, b);
--cnt_E;
det_sum -= a.det(b);
});
UPPER.add(
-p, [&](Point<T> p) { add_v(-p); }, [&](Point<T> p) { rm_v(-p); },
[&](Point<T> a, Point<T> b) {
add_e(-a, -b);
++cnt_E;
det_sum += a.det(b);
},
[&](Point<T> a, Point<T> b) {
rm_e(-a, -b);
--cnt_E;
det_sum -= a.det(b);
});
}
void add(Point<T> p) {
add(
p, [](Point<T> p) {}, [](Point<T> p) {}, [](Point<T> s, Point<T> t) {},
[](Point<T> s, Point<T> t) {});
}
// 中:1、境界:0、外:-1
int side(Point<T> p) {
int a = LOWER.side(p);
int b = UPPER.side(-p);
if (a == 0 || b == 0) return 0;
return min(a, b);
}
};