This documentation is automatically generated by online-judge-tools/verification-helper
#include "geo/convex_polygon.hpp"
#pragma once
#include "geo/base.hpp"
#include "geo/convex_hull.hpp"
// n=2 は現状サポートしていない
template <typename T>
struct ConvexPolygon {
using P = Point<T>;
int n;
vc<P> point;
T area2;
ConvexPolygon(vc<P> point_) : n(len(point_)), point(point_) {
assert(n >= 3);
area2 = 0;
FOR(i, n) {
int j = nxt_idx(i), k = nxt_idx(j);
assert((point[j] - point[i]).det(point[k] - point[i]) >= 0);
area2 += point[i].det(point[j]);
}
}
// 比較関数 comp(i,j)
template <typename F>
int periodic_min_comp(F comp) {
int L = 0, M = n, R = n + n;
while (1) {
if (R - L == 2) break;
int L1 = (L + M) / 2, R1 = (M + R + 1) / 2;
if (comp(L1 % n, M % n)) { R = M, M = L1; }
elif (comp(R1 % n, M % n)) { L = M, M = R1; }
else {
L = L1, R = R1;
}
}
return M % n;
}
int nxt_idx(int i) { return (i + 1 == n ? 0 : i + 1); }
int prev_idx(int i) { return (i == 0 ? n - 1 : i - 1); }
// 中:1, 境界:0, 外:-1. test した.
int side(P p) {
int L = 1, R = n - 1;
T a = (point[L] - point[0]).det(p - point[0]);
T b = (point[R] - point[0]).det(p - point[0]);
if (a < 0 || b > 0) return -1;
// p は 0 から見て [L,R] 方向
while (R - L >= 2) {
int M = (L + R) / 2;
T c = (point[M] - point[0]).det(p - point[0]);
if (c < 0)
R = M, b = c;
else
L = M, a = c;
}
T c = (point[R] - point[L]).det(p - point[L]);
T x = min({a, -b, c});
if (x < 0) return -1;
if (x > 0) return 1;
// on triangle p[0]p[L]p[R]
if (p == point[0]) return 0;
if (c != 0 && a == 0 && L != 1) return 1;
if (c != 0 && b == 0 && R != n - 1) return 1;
return 0;
}
// return {min, idx}. test した.
pair<T, int> min_dot(P p) {
int idx = periodic_min_comp([&](int i, int j) -> bool { return point[i].dot(p) < point[j].dot(p); });
return {point[idx].dot(p), idx};
}
// return {max, idx}. test した.
pair<T, int> max_dot(P p) {
int idx = periodic_min_comp([&](int i, int j) -> bool { return point[i].dot(p) > point[j].dot(p); });
return {point[idx].dot(p), idx};
}
// p から見える範囲. p 辺に沿って見えるところも見えるとする. test した.
// 多角形からの反時計順は [l,r] だが p から見た偏角順は [r,l] なので注意
pair<int, int> visible_range(P p) {
int a = periodic_min_comp([&](int i, int j) -> bool { return ((point[i] - p).det(point[j] - p) < 0); });
int b = periodic_min_comp([&](int i, int j) -> bool { return ((point[i] - p).det(point[j] - p) > 0); });
if ((p - point[a]).det(p - point[prev_idx(a)]) == T(0)) a = prev_idx(a);
if ((p - point[b]).det(p - point[nxt_idx(b)]) == T(0)) b = nxt_idx(b);
return {a, b};
}
// 線分が「内部と」交わるか
// https://codeforces.com/contest/1906/problem/D
bool check_cross(P A, P B) {
FOR(2) {
swap(A, B);
auto [a, b] = visible_range(A);
if ((point[a] - A).det(B - A) >= 0) return 0;
if ((point[b] - A).det(B - A) <= 0) return 0;
}
return 1;
}
vc<T> AREA;
// point[i,...,j] (inclusive) の面積の 2 倍
T area_between(int i, int j) {
assert(i <= j && j <= i + n);
if (j == i + n) return area2;
i %= n, j %= n;
if (i > j) j += n;
if (AREA.empty()) build_AREA();
return AREA[j] - AREA[i] + (point[j % n].det(point[i]));
}
void build_AREA() {
AREA.resize(2 * n);
FOR(i, n) AREA[n + i] = AREA[i] = point[i].det(point[nxt_idx(i)]);
AREA = cumsum<T>(AREA);
}
// 直線の左側の面積. strict に 2 回交わることを仮定.
// https://codeforces.com/contest/799/problem/G
T left_area(Line<T> L) {
static_assert(is_same<T, double>::value || is_same<T, long double>::value);
Point<T> normal(L.a, L.b);
int a = min_dot(normal).se;
int b = max_dot(normal).se;
if (b < a) b += n;
assert(L.eval(point[a % n]) < 0 && L.eval(point[b % n]) > 0);
int p = binary_search([&](int i) -> bool { return L.eval(point[i % n]) < 0; }, a, b);
int q = binary_search([&](int i) -> bool { return L.eval(point[i % n]) > 0; }, b, a + n);
T s, t;
{
T x = L.eval(point[p % n]);
T y = L.eval(point[(p + 1) % n]);
s = x / (x - y);
}
{
T x = L.eval(point[q % n]);
T y = L.eval(point[(q + 1) % n]);
t = x / (x - y);
}
P A(point[p % n]), B(point[(p + 1) % n]);
P C(point[q % n]), D(point[(q + 1) % n]);
P X = B * s + A * (1 - s);
P Y = D * t + C * (1 - t);
T ANS = area_between(p, q);
ANS -= (A - C).det(X - C);
ANS += (Y - C).det(X - C);
return ANS;
}
};
#line 2 "geo/convex_polygon.hpp"
#line 2 "geo/base.hpp"
template <typename T>
struct Point {
T x, y;
Point() : x(0), y(0) {}
template <typename A, typename B>
Point(A x, B y) : x(x), y(y) {}
template <typename A, typename B>
Point(pair<A, B> p) : x(p.fi), y(p.se) {}
Point operator+=(const Point p) {
x += p.x, y += p.y;
return *this;
}
Point operator-=(const Point p) {
x -= p.x, y -= p.y;
return *this;
}
Point operator+(Point p) const { return {x + p.x, y + p.y}; }
Point operator-(Point p) const { return {x - p.x, y - p.y}; }
bool operator==(Point p) const { return x == p.x && y == p.y; }
bool operator!=(Point p) const { return x != p.x || y != p.y; }
Point operator-() const { return {-x, -y}; }
Point operator*(T t) const { return {x * t, y * t}; }
Point operator/(T t) const { return {x / t, y / t}; }
bool operator<(Point p) const {
if (x != p.x) return x < p.x;
return y < p.y;
}
T dot(const Point& other) const { return x * other.x + y * other.y; }
T det(const Point& other) const { return x * other.y - y * other.x; }
double norm() { return sqrtl(x * x + y * y); }
double angle() { return atan2(y, x); }
Point rotate(double theta) {
static_assert(!is_integral<T>::value);
double c = cos(theta), s = sin(theta);
return Point{c * x - s * y, s * x + c * y};
}
Point rot90(bool ccw) { return (ccw ? Point{-y, x} : Point{y, -x}); }
};
#ifdef FASTIO
template <typename T>
void rd(Point<T>& p) {
fastio::rd(p.x), fastio::rd(p.y);
}
template <typename T>
void wt(Point<T>& p) {
fastio::wt(p.x);
fastio::wt(' ');
fastio::wt(p.y);
}
#endif
// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
T x = (B - A).det(C - A);
if (x > 0) return 1;
if (x < 0) return -1;
return 0;
}
template <typename REAL, typename T, typename U>
REAL dist(Point<T> A, Point<U> B) {
REAL dx = REAL(A.x) - REAL(B.x);
REAL dy = REAL(A.y) - REAL(B.y);
return sqrt(dx * dx + dy * dy);
}
// ax+by+c
template <typename T>
struct Line {
T a, b, c;
Line(T a, T b, T c) : a(a), b(b), c(c) {}
Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; }
Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}
template <typename U>
U eval(Point<U> P) {
return a * P.x + b * P.y + c;
}
template <typename U>
T eval(U x, U y) {
return a * x + b * y + c;
}
// 同じ直線が同じ a,b,c で表現されるようにする
void normalize() {
static_assert(is_same_v<T, int> || is_same_v<T, long long>);
T g = gcd(gcd(abs(a), abs(b)), abs(c));
a /= g, b /= g, c /= g;
if (b < 0) { a = -a, b = -b, c = -c; }
if (b == 0 && a < 0) { a = -a, b = -b, c = -c; }
}
bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};
template <typename T>
struct Segment {
Point<T> A, B;
Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}
bool contain(Point<T> C) {
T det = (C - A).det(B - A);
if (det != 0) return 0;
return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
}
Line<T> to_Line() { return Line(A, B); }
};
template <typename REAL>
struct Circle {
Point<REAL> O;
REAL r;
Circle() {}
Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
template <typename T>
bool contain(Point<T> p) {
REAL dx = p.x - O.x, dy = p.y - O.y;
return dx * dx + dy * dy <= r * r;
}
};
#line 2 "geo/convex_hull.hpp"
#line 4 "geo/convex_hull.hpp"
// allow_180=true で同一座標点があるとこわれる
// full なら I[0] が sorted で min になる
template <typename T, bool allow_180 = false>
vector<int> ConvexHull(vector<Point<T>>& XY, string mode = "full", bool sorted = false) {
assert(mode == "full" || mode == "lower" || mode == "upper");
ll N = XY.size();
if (N == 1) return {0};
if (N == 2) {
if (XY[0] < XY[1]) return {0, 1};
if (XY[1] < XY[0]) return {1, 0};
return {0};
}
vc<int> I(N);
if (sorted) {
FOR(i, N) I[i] = i;
} else {
I = argsort(XY);
}
if constexpr (allow_180) { FOR(i, N - 1) assert(XY[i] != XY[i + 1]); }
auto check = [&](ll i, ll j, ll k) -> bool {
T det = (XY[j] - XY[i]).det(XY[k] - XY[i]);
if constexpr (allow_180) return det >= 0;
return det > T(0);
};
auto calc = [&]() {
vector<int> P;
for (auto&& k: I) {
while (P.size() > 1) {
auto i = P[P.size() - 2];
auto j = P[P.size() - 1];
if (check(i, j, k)) break;
P.pop_back();
}
P.eb(k);
}
return P;
};
vc<int> P;
if (mode == "full" || mode == "lower") {
vc<int> Q = calc();
P.insert(P.end(), all(Q));
}
if (mode == "full" || mode == "upper") {
if (!P.empty()) P.pop_back();
reverse(all(I));
vc<int> Q = calc();
P.insert(P.end(), all(Q));
}
if (mode == "upper") reverse(all(P));
while (len(P) >= 2 && XY[P[0]] == XY[P.back()]) P.pop_back();
return P;
}
#line 5 "geo/convex_polygon.hpp"
// n=2 は現状サポートしていない
template <typename T>
struct ConvexPolygon {
using P = Point<T>;
int n;
vc<P> point;
T area2;
ConvexPolygon(vc<P> point_) : n(len(point_)), point(point_) {
assert(n >= 3);
area2 = 0;
FOR(i, n) {
int j = nxt_idx(i), k = nxt_idx(j);
assert((point[j] - point[i]).det(point[k] - point[i]) >= 0);
area2 += point[i].det(point[j]);
}
}
// 比較関数 comp(i,j)
template <typename F>
int periodic_min_comp(F comp) {
int L = 0, M = n, R = n + n;
while (1) {
if (R - L == 2) break;
int L1 = (L + M) / 2, R1 = (M + R + 1) / 2;
if (comp(L1 % n, M % n)) { R = M, M = L1; }
elif (comp(R1 % n, M % n)) { L = M, M = R1; }
else {
L = L1, R = R1;
}
}
return M % n;
}
int nxt_idx(int i) { return (i + 1 == n ? 0 : i + 1); }
int prev_idx(int i) { return (i == 0 ? n - 1 : i - 1); }
// 中:1, 境界:0, 外:-1. test した.
int side(P p) {
int L = 1, R = n - 1;
T a = (point[L] - point[0]).det(p - point[0]);
T b = (point[R] - point[0]).det(p - point[0]);
if (a < 0 || b > 0) return -1;
// p は 0 から見て [L,R] 方向
while (R - L >= 2) {
int M = (L + R) / 2;
T c = (point[M] - point[0]).det(p - point[0]);
if (c < 0)
R = M, b = c;
else
L = M, a = c;
}
T c = (point[R] - point[L]).det(p - point[L]);
T x = min({a, -b, c});
if (x < 0) return -1;
if (x > 0) return 1;
// on triangle p[0]p[L]p[R]
if (p == point[0]) return 0;
if (c != 0 && a == 0 && L != 1) return 1;
if (c != 0 && b == 0 && R != n - 1) return 1;
return 0;
}
// return {min, idx}. test した.
pair<T, int> min_dot(P p) {
int idx = periodic_min_comp([&](int i, int j) -> bool { return point[i].dot(p) < point[j].dot(p); });
return {point[idx].dot(p), idx};
}
// return {max, idx}. test した.
pair<T, int> max_dot(P p) {
int idx = periodic_min_comp([&](int i, int j) -> bool { return point[i].dot(p) > point[j].dot(p); });
return {point[idx].dot(p), idx};
}
// p から見える範囲. p 辺に沿って見えるところも見えるとする. test した.
// 多角形からの反時計順は [l,r] だが p から見た偏角順は [r,l] なので注意
pair<int, int> visible_range(P p) {
int a = periodic_min_comp([&](int i, int j) -> bool { return ((point[i] - p).det(point[j] - p) < 0); });
int b = periodic_min_comp([&](int i, int j) -> bool { return ((point[i] - p).det(point[j] - p) > 0); });
if ((p - point[a]).det(p - point[prev_idx(a)]) == T(0)) a = prev_idx(a);
if ((p - point[b]).det(p - point[nxt_idx(b)]) == T(0)) b = nxt_idx(b);
return {a, b};
}
// 線分が「内部と」交わるか
// https://codeforces.com/contest/1906/problem/D
bool check_cross(P A, P B) {
FOR(2) {
swap(A, B);
auto [a, b] = visible_range(A);
if ((point[a] - A).det(B - A) >= 0) return 0;
if ((point[b] - A).det(B - A) <= 0) return 0;
}
return 1;
}
vc<T> AREA;
// point[i,...,j] (inclusive) の面積の 2 倍
T area_between(int i, int j) {
assert(i <= j && j <= i + n);
if (j == i + n) return area2;
i %= n, j %= n;
if (i > j) j += n;
if (AREA.empty()) build_AREA();
return AREA[j] - AREA[i] + (point[j % n].det(point[i]));
}
void build_AREA() {
AREA.resize(2 * n);
FOR(i, n) AREA[n + i] = AREA[i] = point[i].det(point[nxt_idx(i)]);
AREA = cumsum<T>(AREA);
}
// 直線の左側の面積. strict に 2 回交わることを仮定.
// https://codeforces.com/contest/799/problem/G
T left_area(Line<T> L) {
static_assert(is_same<T, double>::value || is_same<T, long double>::value);
Point<T> normal(L.a, L.b);
int a = min_dot(normal).se;
int b = max_dot(normal).se;
if (b < a) b += n;
assert(L.eval(point[a % n]) < 0 && L.eval(point[b % n]) > 0);
int p = binary_search([&](int i) -> bool { return L.eval(point[i % n]) < 0; }, a, b);
int q = binary_search([&](int i) -> bool { return L.eval(point[i % n]) > 0; }, b, a + n);
T s, t;
{
T x = L.eval(point[p % n]);
T y = L.eval(point[(p + 1) % n]);
s = x / (x - y);
}
{
T x = L.eval(point[q % n]);
T y = L.eval(point[(q + 1) % n]);
t = x / (x - y);
}
P A(point[p % n]), B(point[(p + 1) % n]);
P C(point[q % n]), D(point[(q + 1) % n]);
P X = B * s + A * (1 - s);
P Y = D * t + C * (1 - t);
T ANS = area_between(p, q);
ANS -= (A - C).det(X - C);
ANS += (Y - C).det(X - C);
return ANS;
}
};