This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "flow/rank_maximal_bipartite_matching.hpp"
#include "graph/bipartite_vertex_coloring.hpp" // (N1, N2) bipartite graph with edge-weight 0, 1, ..., K - 1. // find a matching s.t. (# of K-1, # of K-2, ...) is lex max. // https://yukicoder.me/problems/no/1615 // https://qoj.ac/contest/1388/problem/6546 template <typename GT> struct Rank_Maximal_Bipartite_Matching { int N, K; GT& G; vc<int> color; vc<int> dist, match; vc<int> que; vc<bool> vis; vc<bool> vcover; // edge の管理 // [L,M) : active, [M,R) : inactive vc<pair<int, int>> dat; vc<int> LID, MID, RID; Rank_Maximal_Bipartite_Matching(GT& G) : N(G.N), G(G) { color = bipartite_vertex_coloring(G); if (N > 0) assert(!color.empty()); dist.assign(N, -1), match.assign(N, -1); que.assign(N, -1), vis.assign(N, -1); vcover.assign(N, 0); K = 0; for (auto& e: G.edges) chmax(K, e.cost); ++K; build(); FOR_R(k, K) solve(k); } void build() { FOR(v, N) { LID.eb(len(dat)); if (color[v] == 0) { for (auto& e: G[v]) { dat.eb(e.to, e.cost); } } } LID.eb(len(dat)); MID.resize(N), RID.resize(N); FOR(v, N) MID[v] = LID[v], RID[v] = LID[v + 1]; } void solve(int k) { // weight k の edge を active にする FOR(v, N) { if (vcover[v]) continue; FOR(i, MID[v], RID[v]) { auto [to, cost] = dat[i]; if (cost != k) continue; swap(dat[MID[v]], dat[i]), ++MID[v]; } } while (1) { bfs(); vis.assign(N, false); int flow = 0; FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow; if (!flow) break; } // update vertex cover FOR(v, N) { vcover[v] = (color[v] ^ (dist[v] == -1)); } // active な辺のうち両端点が vcover に触れているものを削除 FOR(v, N) { if (!vcover[v]) continue; FOR_R(i, LID[v], MID[v]) { auto [to, cost] = dat[i]; if (vcover[to]) { swap(dat[i], dat[MID[v] - 1]); swap(dat[MID[v] - 1], dat[RID[v] - 1]); --MID[v], --RID[v]; } } } // inactive な辺のうち少なくとも一方が vcover に触れているものを削除 FOR(v, N) { if (vcover[v]) { RID[v] = MID[v]; continue; } FOR_R(i, MID[v], RID[v]) { auto [to, cost] = dat[i]; if (vcover[to]) { swap(dat[i], dat[RID[v] - 1]), --RID[v]; } } } } void bfs() { dist.assign(N, -1); int ql = 0, qr = 0; FOR(v, N) if (!color[v] && match[v] == -1) que[qr++] = v, dist[v] = 0; while (ql < qr) { int v = que[ql++]; FOR(i, LID[v], MID[v]) { auto [to, cost] = dat[i]; dist[to] = 0; int w = match[to]; if (w != -1 && dist[w] == -1) dist[w] = dist[v] + 1, que[qr++] = w; } } } bool dfs(int v) { vis[v] = 1; FOR(i, LID[v], MID[v]) { auto [to, cost] = dat[i]; int w = match[to]; if (w == -1 || (!vis[w] && dist[w] == dist[v] + 1 && dfs(w))) { match[to] = v, match[v] = to; return true; } } return false; } vc<int> get_matching_edges() { vc<int> match_wt(N, -1); vc<int> match_e(N, -1); for (auto& e: G.edges) { int a = e.frm, b = e.to; if (color[a]) swap(a, b); if (match[a] == b && chmax(match_wt[a], e.cost)) match_e[a] = e.id; } vc<int> res; FOR(v, N) if (match_e[v] != -1) res.eb(match_e[v]); return res; } };
#line 1 "flow/rank_maximal_bipartite_matching.hpp" #line 2 "graph/bipartite_vertex_coloring.hpp" #line 2 "ds/hashmap.hpp" // u64 -> Val template <typename Val> struct HashMap { // n は入れたいものの個数で ok HashMap(u32 n = 0) { build(n); } void build(u32 n) { u32 k = 8; while (k < n * 2) k *= 2; cap = k / 2, mask = k - 1; key.resize(k), val.resize(k), used.assign(k, 0); } // size を保ったまま. size=0 にするときは build すること. void clear() { used.assign(len(used), 0); cap = (mask + 1) / 2; } int size() { return len(used) / 2 - cap; } int index(const u64& k) { int i = 0; for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {} return i; } Val& operator[](const u64& k) { if (cap == 0) extend(); int i = index(k); if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; } return val[i]; } Val get(const u64& k, Val default_value) { int i = index(k); return (used[i] ? val[i] : default_value); } bool count(const u64& k) { int i = index(k); return used[i] && key[i] == k; } // f(key, val) template <typename F> void enumerate_all(F f) { FOR(i, len(used)) if (used[i]) f(key[i], val[i]); } private: u32 cap, mask; vc<u64> key; vc<Val> val; vc<bool> used; u64 hash(u64 x) { static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count(); x += FIXED_RANDOM; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return (x ^ (x >> 31)) & mask; } void extend() { vc<pair<u64, Val>> dat; dat.reserve(len(used) / 2 - cap); FOR(i, len(used)) { if (used[i]) dat.eb(key[i], val[i]); } build(2 * len(dat)); for (auto& [a, b]: dat) (*this)[a] = b; } }; #line 3 "graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } HashMap<int> MP_FOR_EID; int get_eid(u64 a, u64 b) { if (len(MP_FOR_EID) == 0) { MP_FOR_EID.build(N - 1); for (auto& e: edges) { u64 a = e.frm, b = e.to; u64 k = to_eid_key(a, b); MP_FOR_EID[k] = e.id; } } return MP_FOR_EID.get(to_eid_key(a, b), -1); } u64 to_eid_key(u64 a, u64 b) { if (!directed && a > b) swap(a, b); return N * a + b; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 2 "ds/unionfind/unionfind.hpp" struct UnionFind { int n, n_comp; vc<int> dat; // par or (-size) UnionFind(int n = 0) { build(n); } void build(int m) { n = m, n_comp = m; dat.assign(n, -1); } void reset() { build(n); } int operator[](int x) { while (dat[x] >= 0) { int pp = dat[dat[x]]; if (pp < 0) { return dat[x]; } x = dat[x] = pp; } return x; } ll size(int x) { x = (*this)[x]; return -dat[x]; } bool merge(int x, int y) { x = (*this)[x], y = (*this)[y]; if (x == y) return false; if (-dat[x] < -dat[y]) swap(x, y); dat[x] += dat[y], dat[y] = x, n_comp--; return true; } vc<int> get_all() { vc<int> A(n); FOR(i, n) A[i] = (*this)[i]; return A; } }; #line 5 "graph/bipartite_vertex_coloring.hpp" // 二部グラフでなかった場合には empty template <typename GT> vc<int> bipartite_vertex_coloring(GT& G) { assert(!GT::is_directed); assert(G.is_prepared()); int n = G.N; UnionFind uf(2 * n); for (auto&& e: G.edges) { int u = e.frm, v = e.to; uf.merge(u + n, v), uf.merge(u, v + n); } vc<int> color(2 * n, -1); FOR(v, n) if (uf[v] == v && color[uf[v]] < 0) { color[uf[v]] = 0; color[uf[v + n]] = 1; } FOR(v, n) color[v] = color[uf[v]]; color.resize(n); FOR(v, n) if (uf[v] == uf[v + n]) return {}; return color; } #line 3 "flow/rank_maximal_bipartite_matching.hpp" // (N1, N2) bipartite graph with edge-weight 0, 1, ..., K - 1. // find a matching s.t. (# of K-1, # of K-2, ...) is lex max. // https://yukicoder.me/problems/no/1615 // https://qoj.ac/contest/1388/problem/6546 template <typename GT> struct Rank_Maximal_Bipartite_Matching { int N, K; GT& G; vc<int> color; vc<int> dist, match; vc<int> que; vc<bool> vis; vc<bool> vcover; // edge の管理 // [L,M) : active, [M,R) : inactive vc<pair<int, int>> dat; vc<int> LID, MID, RID; Rank_Maximal_Bipartite_Matching(GT& G) : N(G.N), G(G) { color = bipartite_vertex_coloring(G); if (N > 0) assert(!color.empty()); dist.assign(N, -1), match.assign(N, -1); que.assign(N, -1), vis.assign(N, -1); vcover.assign(N, 0); K = 0; for (auto& e: G.edges) chmax(K, e.cost); ++K; build(); FOR_R(k, K) solve(k); } void build() { FOR(v, N) { LID.eb(len(dat)); if (color[v] == 0) { for (auto& e: G[v]) { dat.eb(e.to, e.cost); } } } LID.eb(len(dat)); MID.resize(N), RID.resize(N); FOR(v, N) MID[v] = LID[v], RID[v] = LID[v + 1]; } void solve(int k) { // weight k の edge を active にする FOR(v, N) { if (vcover[v]) continue; FOR(i, MID[v], RID[v]) { auto [to, cost] = dat[i]; if (cost != k) continue; swap(dat[MID[v]], dat[i]), ++MID[v]; } } while (1) { bfs(); vis.assign(N, false); int flow = 0; FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow; if (!flow) break; } // update vertex cover FOR(v, N) { vcover[v] = (color[v] ^ (dist[v] == -1)); } // active な辺のうち両端点が vcover に触れているものを削除 FOR(v, N) { if (!vcover[v]) continue; FOR_R(i, LID[v], MID[v]) { auto [to, cost] = dat[i]; if (vcover[to]) { swap(dat[i], dat[MID[v] - 1]); swap(dat[MID[v] - 1], dat[RID[v] - 1]); --MID[v], --RID[v]; } } } // inactive な辺のうち少なくとも一方が vcover に触れているものを削除 FOR(v, N) { if (vcover[v]) { RID[v] = MID[v]; continue; } FOR_R(i, MID[v], RID[v]) { auto [to, cost] = dat[i]; if (vcover[to]) { swap(dat[i], dat[RID[v] - 1]), --RID[v]; } } } } void bfs() { dist.assign(N, -1); int ql = 0, qr = 0; FOR(v, N) if (!color[v] && match[v] == -1) que[qr++] = v, dist[v] = 0; while (ql < qr) { int v = que[ql++]; FOR(i, LID[v], MID[v]) { auto [to, cost] = dat[i]; dist[to] = 0; int w = match[to]; if (w != -1 && dist[w] == -1) dist[w] = dist[v] + 1, que[qr++] = w; } } } bool dfs(int v) { vis[v] = 1; FOR(i, LID[v], MID[v]) { auto [to, cost] = dat[i]; int w = match[to]; if (w == -1 || (!vis[w] && dist[w] == dist[v] + 1 && dfs(w))) { match[to] = v, match[v] = to; return true; } } return false; } vc<int> get_matching_edges() { vc<int> match_wt(N, -1); vc<int> match_e(N, -1); for (auto& e: G.edges) { int a = e.frm, b = e.to; if (color[a]) swap(a, b); if (match[a] == b && chmax(match_wt[a], e.cost)) match_e[a] = e.id; } vc<int> res; FOR(v, N) if (match_e[v] != -1) res.eb(match_e[v]); return res; } };