This documentation is automatically generated by online-judge-tools/verification-helper
#include "flow/mincostflow.hpp"
#pragma once
// atcoder library のものを改変
namespace internal {
template <class E>
struct csr {
vector<int> start;
vector<E> elist;
explicit csr(int n, const vector<pair<int, E>>& edges) : start(n + 1), elist(edges.size()) {
for (auto e: edges) { start[e.first + 1]++; }
for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; }
auto counter = start;
for (auto e: edges) { elist[counter[e.first]++] = e.second; }
}
};
template <class T>
struct simple_queue {
vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
/*
・atcoder library をすこし改変したもの
・DAG = true であれば、負辺 OK (1 回目の最短路を dp で行う)
ただし、頂点番号は toposort されていることを仮定している。
*/
template <class Cap = int, class Cost = ll, bool DAG = false>
struct Min_Cost_Flow {
public:
Min_Cost_Flow() {}
explicit Min_Cost_Flow(int n, int source, int sink) : n(n), source(source), sink(sink) {
assert(0 <= source && source < n);
assert(0 <= sink && sink < n);
assert(source != sink);
}
// frm, to, cap, cost
int add(int frm, int to, Cap cap, Cost cost) {
assert(0 <= frm && frm < n);
assert(0 <= to && to < n);
assert(0 <= cap);
assert(DAG || 0 <= cost);
if (DAG) assert(frm < to);
int m = int(_edges.size());
_edges.push_back({frm, to, cap, 0, cost});
return m;
}
void debug() {
print("flow graph");
print("frm, to, cap, cost");
for (auto&& [frm, to, cap, flow, cost]: _edges) { print(frm, to, cap, cost); }
}
struct edge {
int frm, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(_edges.size());
assert(0 <= i && i < m);
return _edges[i];
}
vector<edge> edges() { return _edges; }
// (流量, 費用)
pair<Cap, Cost> flow() { return flow(infty<Cap>); }
// (流量, 費用)
pair<Cap, Cost> flow(Cap flow_limit) { return slope(flow_limit).back(); }
vector<pair<Cap, Cost>> slope() { return slope(infty<Cap>); }
vector<pair<Cap, Cost>> slope(Cap flow_limit) {
int m = int(_edges.size());
vector<int> edge_idx(m);
auto g = [&]() {
vector<int> degree(n), redge_idx(m);
vector<pair<int, _edge>> elist;
elist.reserve(2 * m);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] = degree[e.frm]++;
redge_idx[i] = degree[e.to]++;
elist.push_back({e.frm, {e.to, -1, e.cap - e.flow, e.cost}});
elist.push_back({e.to, {e.frm, -1, e.flow, -e.cost}});
}
auto _g = internal::csr<_edge>(n, elist);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] += _g.start[e.frm];
redge_idx[i] += _g.start[e.to];
_g.elist[edge_idx[i]].rev = redge_idx[i];
_g.elist[redge_idx[i]].rev = edge_idx[i];
}
return _g;
}();
auto result = slope(g, flow_limit);
for (int i = 0; i < m; i++) {
auto e = g.elist[edge_idx[i]];
_edges[i].flow = _edges[i].cap - e.cap;
}
return result;
}
// O(F(N+M)) くらい使って経路復元
vvc<int> path_decomposition() {
vvc<int> TO(n);
for (auto&& e: edges()) { FOR(e.flow) TO[e.frm].eb(e.to); }
vvc<int> res;
vc<int> vis(n);
while (!TO[source].empty()) {
vc<int> path = {source};
vis[source] = 1;
while (path.back() != sink) {
int to = POP(TO[path.back()]);
while (vis[to]) { vis[POP(path)] = 0; }
path.eb(to), vis[to] = 1;
}
for (auto&& v: path) vis[v] = 0;
res.eb(path);
}
return res;
}
vc<Cost> get_potentials() { return potential; }
private:
int n, source, sink;
vector<edge> _edges;
// inside edge
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
vc<Cost> potential;
vector<pair<Cap, Cost>> slope(internal::csr<_edge>& g, Cap flow_limit) {
if (DAG) assert(source == 0 && sink == n - 1);
vector<pair<Cost, Cost>> dual_dist(n);
vector<int> prev_e(n);
vector<bool> vis(n);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
vector<int> que_min;
vector<Q> que;
auto dual_ref = [&]() {
for (int i = 0; i < n; i++) { dual_dist[i].second = infty<Cost>; }
fill(vis.begin(), vis.end(), false);
que_min.clear();
que.clear();
// que[0..heap_r) was heapified
size_t heap_r = 0;
dual_dist[source].second = 0;
que_min.push_back(source);
while (!que_min.empty() || !que.empty()) {
int v;
if (!que_min.empty()) {
v = que_min.back();
que_min.pop_back();
} else {
while (heap_r < que.size()) {
heap_r++;
push_heap(que.begin(), que.begin() + heap_r);
}
v = que.front().to;
pop_heap(que.begin(), que.end());
que.pop_back();
heap_r--;
}
if (vis[v]) continue;
vis[v] = true;
if (v == sink) break;
Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto e = g.elist[i];
if (!e.cap) continue;
Cost cost = e.cost - dual_dist[e.to].first + dual_v;
if (dual_dist[e.to].second > dist_v + cost) {
Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
if (dist_to == dist_v) {
que_min.push_back(e.to);
} else {
que.push_back(Q{dist_to, e.to});
}
}
}
}
if (!vis[sink]) { return false; }
for (int v = 0; v < n; v++) {
if (!vis[v]) continue;
dual_dist[v].first -= dual_dist[sink].second - dual_dist[v].second;
}
return true;
};
auto dual_ref_dag = [&]() {
FOR(i, n) dual_dist[i].se = infty<Cost>;
dual_dist[source].se = 0;
fill(vis.begin(), vis.end(), false);
vis[0] = true;
FOR(v, n) {
if (!vis[v]) continue;
Cost dual_v = dual_dist[v].fi, dist_v = dual_dist[v].se;
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto e = g.elist[i];
if (!e.cap) continue;
Cost cost = e.cost - dual_dist[e.to].fi + dual_v;
if (dual_dist[e.to].se > dist_v + cost) {
vis[e.to] = true;
Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
}
}
}
if (!vis[sink]) { return false; }
for (int v = 0; v < n; v++) {
if (!vis[v]) continue;
dual_dist[v].fi -= dual_dist[sink].se - dual_dist[v].se;
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
vector<pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
while (flow < flow_limit) {
if (DAG && flow == 0) {
if (!dual_ref_dag()) break;
} else {
if (!dual_ref()) break;
}
Cap c = flow_limit - flow;
for (int v = sink; v != source; v = g.elist[prev_e[v]].to) { c = min(c, g.elist[g.elist[prev_e[v]].rev].cap); }
for (int v = sink; v != source; v = g.elist[prev_e[v]].to) {
auto& e = g.elist[prev_e[v]];
e.cap += c;
g.elist[e.rev].cap -= c;
}
Cost d = -dual_dist[source].first;
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) { result.pop_back(); }
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
dual_ref();
potential.resize(n);
FOR(v, n) potential[v] = dual_dist[v].fi;
return result;
}
};
#line 2 "flow/mincostflow.hpp"
// atcoder library のものを改変
namespace internal {
template <class E>
struct csr {
vector<int> start;
vector<E> elist;
explicit csr(int n, const vector<pair<int, E>>& edges) : start(n + 1), elist(edges.size()) {
for (auto e: edges) { start[e.first + 1]++; }
for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; }
auto counter = start;
for (auto e: edges) { elist[counter[e.first]++] = e.second; }
}
};
template <class T>
struct simple_queue {
vector<T> payload;
int pos = 0;
void reserve(int n) { payload.reserve(n); }
int size() const { return int(payload.size()) - pos; }
bool empty() const { return pos == int(payload.size()); }
void push(const T& t) { payload.push_back(t); }
T& front() { return payload[pos]; }
void clear() {
payload.clear();
pos = 0;
}
void pop() { pos++; }
};
} // namespace internal
/*
・atcoder library をすこし改変したもの
・DAG = true であれば、負辺 OK (1 回目の最短路を dp で行う)
ただし、頂点番号は toposort されていることを仮定している。
*/
template <class Cap = int, class Cost = ll, bool DAG = false>
struct Min_Cost_Flow {
public:
Min_Cost_Flow() {}
explicit Min_Cost_Flow(int n, int source, int sink) : n(n), source(source), sink(sink) {
assert(0 <= source && source < n);
assert(0 <= sink && sink < n);
assert(source != sink);
}
// frm, to, cap, cost
int add(int frm, int to, Cap cap, Cost cost) {
assert(0 <= frm && frm < n);
assert(0 <= to && to < n);
assert(0 <= cap);
assert(DAG || 0 <= cost);
if (DAG) assert(frm < to);
int m = int(_edges.size());
_edges.push_back({frm, to, cap, 0, cost});
return m;
}
void debug() {
print("flow graph");
print("frm, to, cap, cost");
for (auto&& [frm, to, cap, flow, cost]: _edges) { print(frm, to, cap, cost); }
}
struct edge {
int frm, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(_edges.size());
assert(0 <= i && i < m);
return _edges[i];
}
vector<edge> edges() { return _edges; }
// (流量, 費用)
pair<Cap, Cost> flow() { return flow(infty<Cap>); }
// (流量, 費用)
pair<Cap, Cost> flow(Cap flow_limit) { return slope(flow_limit).back(); }
vector<pair<Cap, Cost>> slope() { return slope(infty<Cap>); }
vector<pair<Cap, Cost>> slope(Cap flow_limit) {
int m = int(_edges.size());
vector<int> edge_idx(m);
auto g = [&]() {
vector<int> degree(n), redge_idx(m);
vector<pair<int, _edge>> elist;
elist.reserve(2 * m);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] = degree[e.frm]++;
redge_idx[i] = degree[e.to]++;
elist.push_back({e.frm, {e.to, -1, e.cap - e.flow, e.cost}});
elist.push_back({e.to, {e.frm, -1, e.flow, -e.cost}});
}
auto _g = internal::csr<_edge>(n, elist);
for (int i = 0; i < m; i++) {
auto e = _edges[i];
edge_idx[i] += _g.start[e.frm];
redge_idx[i] += _g.start[e.to];
_g.elist[edge_idx[i]].rev = redge_idx[i];
_g.elist[redge_idx[i]].rev = edge_idx[i];
}
return _g;
}();
auto result = slope(g, flow_limit);
for (int i = 0; i < m; i++) {
auto e = g.elist[edge_idx[i]];
_edges[i].flow = _edges[i].cap - e.cap;
}
return result;
}
// O(F(N+M)) くらい使って経路復元
vvc<int> path_decomposition() {
vvc<int> TO(n);
for (auto&& e: edges()) { FOR(e.flow) TO[e.frm].eb(e.to); }
vvc<int> res;
vc<int> vis(n);
while (!TO[source].empty()) {
vc<int> path = {source};
vis[source] = 1;
while (path.back() != sink) {
int to = POP(TO[path.back()]);
while (vis[to]) { vis[POP(path)] = 0; }
path.eb(to), vis[to] = 1;
}
for (auto&& v: path) vis[v] = 0;
res.eb(path);
}
return res;
}
vc<Cost> get_potentials() { return potential; }
private:
int n, source, sink;
vector<edge> _edges;
// inside edge
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
vc<Cost> potential;
vector<pair<Cap, Cost>> slope(internal::csr<_edge>& g, Cap flow_limit) {
if (DAG) assert(source == 0 && sink == n - 1);
vector<pair<Cost, Cost>> dual_dist(n);
vector<int> prev_e(n);
vector<bool> vis(n);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
vector<int> que_min;
vector<Q> que;
auto dual_ref = [&]() {
for (int i = 0; i < n; i++) { dual_dist[i].second = infty<Cost>; }
fill(vis.begin(), vis.end(), false);
que_min.clear();
que.clear();
// que[0..heap_r) was heapified
size_t heap_r = 0;
dual_dist[source].second = 0;
que_min.push_back(source);
while (!que_min.empty() || !que.empty()) {
int v;
if (!que_min.empty()) {
v = que_min.back();
que_min.pop_back();
} else {
while (heap_r < que.size()) {
heap_r++;
push_heap(que.begin(), que.begin() + heap_r);
}
v = que.front().to;
pop_heap(que.begin(), que.end());
que.pop_back();
heap_r--;
}
if (vis[v]) continue;
vis[v] = true;
if (v == sink) break;
Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto e = g.elist[i];
if (!e.cap) continue;
Cost cost = e.cost - dual_dist[e.to].first + dual_v;
if (dual_dist[e.to].second > dist_v + cost) {
Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
if (dist_to == dist_v) {
que_min.push_back(e.to);
} else {
que.push_back(Q{dist_to, e.to});
}
}
}
}
if (!vis[sink]) { return false; }
for (int v = 0; v < n; v++) {
if (!vis[v]) continue;
dual_dist[v].first -= dual_dist[sink].second - dual_dist[v].second;
}
return true;
};
auto dual_ref_dag = [&]() {
FOR(i, n) dual_dist[i].se = infty<Cost>;
dual_dist[source].se = 0;
fill(vis.begin(), vis.end(), false);
vis[0] = true;
FOR(v, n) {
if (!vis[v]) continue;
Cost dual_v = dual_dist[v].fi, dist_v = dual_dist[v].se;
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto e = g.elist[i];
if (!e.cap) continue;
Cost cost = e.cost - dual_dist[e.to].fi + dual_v;
if (dual_dist[e.to].se > dist_v + cost) {
vis[e.to] = true;
Cost dist_to = dist_v + cost;
dual_dist[e.to].second = dist_to;
prev_e[e.to] = e.rev;
}
}
}
if (!vis[sink]) { return false; }
for (int v = 0; v < n; v++) {
if (!vis[v]) continue;
dual_dist[v].fi -= dual_dist[sink].se - dual_dist[v].se;
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost_per_flow = -1;
vector<pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
while (flow < flow_limit) {
if (DAG && flow == 0) {
if (!dual_ref_dag()) break;
} else {
if (!dual_ref()) break;
}
Cap c = flow_limit - flow;
for (int v = sink; v != source; v = g.elist[prev_e[v]].to) { c = min(c, g.elist[g.elist[prev_e[v]].rev].cap); }
for (int v = sink; v != source; v = g.elist[prev_e[v]].to) {
auto& e = g.elist[prev_e[v]];
e.cap += c;
g.elist[e.rev].cap -= c;
}
Cost d = -dual_dist[source].first;
flow += c;
cost += c * d;
if (prev_cost_per_flow == d) { result.pop_back(); }
result.push_back({flow, cost});
prev_cost_per_flow = d;
}
dual_ref();
potential.resize(n);
FOR(v, n) potential[v] = dual_dist[v].fi;
return result;
}
};