This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/segtree/rollback_lazy_segtree.hpp"
#include "ds/rollback_array.hpp"
// verify? https://qoj.ac/submission/114657
template <typename ActedMonoid>
struct Rollback_Lazy_SegTree {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename MX::value_type;
using A = typename MA::value_type;
int n, log, size;
Rollback_Array<X> dat;
Rollback_Array<A> laz;
Rollback_Lazy_SegTree() {}
Rollback_Lazy_SegTree(int n) { build(n); }
template <typename F>
Rollback_Lazy_SegTree(int n, F f) {
build(n, f);
}
Rollback_Lazy_SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat = Rollback_Array<X>(vc<X>(size << 1, MX::unit()));
laz = Rollback_Array<A>(vc<A>(size, MA::unit()));
FOR(i, n) dat.set(size + i, f(i));
FOR_R(i, 1, size) update(i);
}
void update(int k) { dat.set(k, MX::op(dat.get(2 * k), dat.get(2 * k + 1))); }
void set(int p, X x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat.set(p, x);
for (int i = 1; i <= log; i++) update(p >> i);
}
void multiply(int p, const X& x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat.set(p, MX::op(dat.get(p), x));
for (int i = 1; i <= log; i++) update(p >> i);
}
X get(int p) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return dat.get(p);
}
vc<X> get_all() {
auto tmp = dat.get_all();
FOR(k, 1, size) push(k);
return {tmp.begin() + size, tmp.begin() + size + n};
}
X prod(int l, int r) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return MX::unit();
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
X xl = MX::unit(), xr = MX::unit();
while (l < r) {
if (l & 1) xl = MX::op(xl, dat.get(l++));
if (r & 1) xr = MX::op(dat.get(--r), xr);
l >>= 1, r >>= 1;
}
return MX::op(xl, xr);
}
X prod_all() { return dat.get(1); }
void apply(int l, int r, A a) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return;
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) apply_at(l++, a);
if (r & 1) apply_at(--r, a);
l >>= 1, r >>= 1;
}
l = l2, r = r2;
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <typename F>
int max_right(const F check, int l) {
assert(0 <= l && l <= n);
assert(check(MX::unit()));
if (l == n) return n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
X sm = MX::unit();
do {
while (l % 2 == 0) l >>= 1;
if (!check(MX::op(sm, dat.get(l)))) {
while (l < size) {
push(l);
l = (2 * l);
if (check(MX::op(sm, dat.get(l)))) { sm = MX::op(sm, dat.get(l++)); }
}
return l - size;
}
sm = MX::op(sm, dat.get(l++));
} while ((l & -l) != l);
return n;
}
template <typename F>
int min_left(const F check, int r) {
assert(0 <= r && r <= n);
assert(check(MX::unit()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
X sm = MX::unit();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(MX::op(dat.get(r), sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (check(MX::op(dat.get(r), sm))) { sm = MX::op(dat.get(r--), sm); }
}
return r + 1 - size;
}
sm = MX::op(dat.get(r), sm);
} while ((r & -r) != r);
return 0;
}
pair<int, int> time() { return {dat.time(), laz.time()}; }
void rollback(pair<int, int> t) { dat.rollback(t.fi), laz.rollback(t.se); }
void push(int k) {
if (laz.get(k) == MA::unit()) return;
apply_at(2 * k, laz.get(k)), apply_at(2 * k + 1, laz.get(k));
laz.set(k, MA::unit());
}
private:
void apply_at(int k, A a) {
ll sz = 1 << (log - topbit(k));
dat.set(k, AM::act(dat.get(k), a, sz));
if (k < size) laz.set(k, MA::op(laz.get(k), a));
}
};
#line 2 "ds/rollback_array.hpp"
template <typename T>
struct Rollback_Array {
int N;
vc<T> dat;
vc<pair<int, T>> history;
Rollback_Array() {}
Rollback_Array(vc<T> x) : N(len(x)), dat(x) {}
Rollback_Array(int N) : N(N), dat(N) {}
template <typename F>
Rollback_Array(int N, F f) : N(N) {
dat.reserve(N);
FOR(i, N) dat.eb(f(i));
}
int time() { return len(history); }
void rollback(int t) {
FOR_R(i, t, time()) {
auto& [idx, v] = history[i];
dat[idx] = v;
}
history.resize(t);
}
T get(int idx) { return dat[idx]; }
void set(int idx, T x) {
history.eb(idx, dat[idx]);
dat[idx] = x;
}
vc<T> get_all() {
vc<T> res(N);
FOR(i, N) res[i] = get(i);
return res;
}
};
#line 2 "ds/segtree/rollback_lazy_segtree.hpp"
// verify? https://qoj.ac/submission/114657
template <typename ActedMonoid>
struct Rollback_Lazy_SegTree {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename MX::value_type;
using A = typename MA::value_type;
int n, log, size;
Rollback_Array<X> dat;
Rollback_Array<A> laz;
Rollback_Lazy_SegTree() {}
Rollback_Lazy_SegTree(int n) { build(n); }
template <typename F>
Rollback_Lazy_SegTree(int n, F f) {
build(n, f);
}
Rollback_Lazy_SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat = Rollback_Array<X>(vc<X>(size << 1, MX::unit()));
laz = Rollback_Array<A>(vc<A>(size, MA::unit()));
FOR(i, n) dat.set(size + i, f(i));
FOR_R(i, 1, size) update(i);
}
void update(int k) { dat.set(k, MX::op(dat.get(2 * k), dat.get(2 * k + 1))); }
void set(int p, X x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat.set(p, x);
for (int i = 1; i <= log; i++) update(p >> i);
}
void multiply(int p, const X& x) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
dat.set(p, MX::op(dat.get(p), x));
for (int i = 1; i <= log; i++) update(p >> i);
}
X get(int p) {
assert(0 <= p && p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return dat.get(p);
}
vc<X> get_all() {
auto tmp = dat.get_all();
FOR(k, 1, size) push(k);
return {tmp.begin() + size, tmp.begin() + size + n};
}
X prod(int l, int r) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return MX::unit();
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
X xl = MX::unit(), xr = MX::unit();
while (l < r) {
if (l & 1) xl = MX::op(xl, dat.get(l++));
if (r & 1) xr = MX::op(dat.get(--r), xr);
l >>= 1, r >>= 1;
}
return MX::op(xl, xr);
}
X prod_all() { return dat.get(1); }
void apply(int l, int r, A a) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return;
l += size, r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) apply_at(l++, a);
if (r & 1) apply_at(--r, a);
l >>= 1, r >>= 1;
}
l = l2, r = r2;
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <typename F>
int max_right(const F check, int l) {
assert(0 <= l && l <= n);
assert(check(MX::unit()));
if (l == n) return n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
X sm = MX::unit();
do {
while (l % 2 == 0) l >>= 1;
if (!check(MX::op(sm, dat.get(l)))) {
while (l < size) {
push(l);
l = (2 * l);
if (check(MX::op(sm, dat.get(l)))) { sm = MX::op(sm, dat.get(l++)); }
}
return l - size;
}
sm = MX::op(sm, dat.get(l++));
} while ((l & -l) != l);
return n;
}
template <typename F>
int min_left(const F check, int r) {
assert(0 <= r && r <= n);
assert(check(MX::unit()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
X sm = MX::unit();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!check(MX::op(dat.get(r), sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (check(MX::op(dat.get(r), sm))) { sm = MX::op(dat.get(r--), sm); }
}
return r + 1 - size;
}
sm = MX::op(dat.get(r), sm);
} while ((r & -r) != r);
return 0;
}
pair<int, int> time() { return {dat.time(), laz.time()}; }
void rollback(pair<int, int> t) { dat.rollback(t.fi), laz.rollback(t.se); }
void push(int k) {
if (laz.get(k) == MA::unit()) return;
apply_at(2 * k, laz.get(k)), apply_at(2 * k + 1, laz.get(k));
laz.set(k, MA::unit());
}
private:
void apply_at(int k, A a) {
ll sz = 1 << (log - topbit(k));
dat.set(k, AM::act(dat.get(k), a, sz));
if (k < size) laz.set(k, MA::op(laz.get(k), a));
}
};