This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "ds/rectangle_union.hpp"
#include "ds/segtree/lazy_segtree.hpp" #include "alg/acted_monoid/minmincnt_add.hpp" template <typename XY = int> struct Rectangle_Union { using RECT = tuple<XY, XY, XY, XY>; vc<RECT> rectangles; vc<XY> X, Y; void add_rect(XY xl, XY xr, XY yl, XY yr) { assert(xl < xr && yl < yr); X.eb(xl), X.eb(xr), Y.eb(yl), Y.eb(yr); rectangles.eb(xl, xr, yl, yr); } template <typename ANS_TYPE = ll> ANS_TYPE calc() { int N = len(X); vc<int> ord_x = argsort(X); vc<int> ord_y = argsort(Y); vc<int> rk_y(N); FOR(i, N) rk_y[ord_y[i]] = i; X = rearrange(X, ord_x); Y = rearrange(Y, ord_y); using AM = ActedMonoid_MinMincnt_Add<XY>; Lazy_SegTree<AM> seg(N - 1, [&](int i) -> pair<XY, XY> { return {0, Y[i + 1] - Y[i]}; }); ANS_TYPE ANS = 0; XY total = Y.back() - Y[0]; FOR(i, N - 1) { int k = ord_x[i] / 2; int a = (ord_x[i] & 1 ? -1 : 1); seg.apply(rk_y[2 * k], rk_y[2 * k + 1], a); auto [min, mincnt] = seg.prod_all(); ANS_TYPE dy = total - (min == 0 ? mincnt : 0); ANS_TYPE dx = X[i + 1] - X[i]; ANS += dx * dy; } return ANS; } };
#line 2 "ds/segtree/lazy_segtree.hpp" template <typename ActedMonoid> struct Lazy_SegTree { using AM = ActedMonoid; using MX = typename AM::Monoid_X; using MA = typename AM::Monoid_A; using X = typename MX::value_type; using A = typename MA::value_type; int n, log, size; vc<X> dat; vc<A> laz; Lazy_SegTree() {} Lazy_SegTree(int n) { build(n); } template <typename F> Lazy_SegTree(int n, F f) { build(n, f); } Lazy_SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); laz.assign(size, MA::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } void update(int k) { dat[k] = MX::op(dat[2 * k], dat[2 * k + 1]); } void set(int p, X x) { assert(0 <= p && p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); dat[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } void multiply(int p, const X& x) { assert(0 <= p && p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); dat[p] = MX::op(dat[p], x); for (int i = 1; i <= log; i++) update(p >> i); } X get(int p) { assert(0 <= p && p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return dat[p]; } vc<X> get_all() { FOR(k, 1, size) { push(k); } return {dat.begin() + size, dat.begin() + size + n}; } X prod(int l, int r) { assert(0 <= l && l <= r && r <= n); if (l == r) return MX::unit(); l += size, r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } X xl = MX::unit(), xr = MX::unit(); while (l < r) { if (l & 1) xl = MX::op(xl, dat[l++]); if (r & 1) xr = MX::op(dat[--r], xr); l >>= 1, r >>= 1; } return MX::op(xl, xr); } X prod_all() { return dat[1]; } void apply(int l, int r, A a) { assert(0 <= l && l <= r && r <= n); if (l == r) return; l += size, r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } int l2 = l, r2 = r; while (l < r) { if (l & 1) apply_at(l++, a); if (r & 1) apply_at(--r, a); l >>= 1, r >>= 1; } l = l2, r = r2; for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template <typename F> int max_right(const F check, int l) { assert(0 <= l && l <= n); assert(check(MX::unit())); if (l == n) return n; l += size; for (int i = log; i >= 1; i--) push(l >> i); X sm = MX::unit(); do { while (l % 2 == 0) l >>= 1; if (!check(MX::op(sm, dat[l]))) { while (l < size) { push(l); l = (2 * l); if (check(MX::op(sm, dat[l]))) { sm = MX::op(sm, dat[l++]); } } return l - size; } sm = MX::op(sm, dat[l++]); } while ((l & -l) != l); return n; } template <typename F> int min_left(const F check, int r) { assert(0 <= r && r <= n); assert(check(MX::unit())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); X sm = MX::unit(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!check(MX::op(dat[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (check(MX::op(dat[r], sm))) { sm = MX::op(dat[r--], sm); } } return r + 1 - size; } sm = MX::op(dat[r], sm); } while ((r & -r) != r); return 0; } private: void apply_at(int k, A a) { ll sz = 1 << (log - topbit(k)); dat[k] = AM::act(dat[k], a, sz); if (k < size) laz[k] = MA::op(laz[k], a); } void push(int k) { if (laz[k] == MA::unit()) return; apply_at(2 * k, laz[k]), apply_at(2 * k + 1, laz[k]); laz[k] = MA::unit(); } }; #line 2 "alg/monoid/minmincnt.hpp" // 最小値、最小値の個数 template <typename E> struct Monoid_MinMincnt { using value_type = pair<E, E>; using X = value_type; static X op(X x, X y) { auto [xmin, xmincnt] = x; auto [ymin, ymincnt] = y; if (xmin > ymin) return y; if (xmin < ymin) return x; return {xmin, xmincnt + ymincnt}; } static constexpr X unit() { return {infty<E>, 0}; } static constexpr bool commute = true; }; #line 2 "alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 3 "alg/acted_monoid/minmincnt_add.hpp" template <typename E> struct ActedMonoid_MinMincnt_Add { using Monoid_X = Monoid_MinMincnt<E>; using Monoid_A = Monoid_Add<E>; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X &x, const A &a, const ll &size) { auto [xmin, xmincnt] = x; if (xmin == infty<E>) return x; return {xmin + a, xmincnt}; } }; #line 3 "ds/rectangle_union.hpp" template <typename XY = int> struct Rectangle_Union { using RECT = tuple<XY, XY, XY, XY>; vc<RECT> rectangles; vc<XY> X, Y; void add_rect(XY xl, XY xr, XY yl, XY yr) { assert(xl < xr && yl < yr); X.eb(xl), X.eb(xr), Y.eb(yl), Y.eb(yr); rectangles.eb(xl, xr, yl, yr); } template <typename ANS_TYPE = ll> ANS_TYPE calc() { int N = len(X); vc<int> ord_x = argsort(X); vc<int> ord_y = argsort(Y); vc<int> rk_y(N); FOR(i, N) rk_y[ord_y[i]] = i; X = rearrange(X, ord_x); Y = rearrange(Y, ord_y); using AM = ActedMonoid_MinMincnt_Add<XY>; Lazy_SegTree<AM> seg(N - 1, [&](int i) -> pair<XY, XY> { return {0, Y[i + 1] - Y[i]}; }); ANS_TYPE ANS = 0; XY total = Y.back() - Y[0]; FOR(i, N - 1) { int k = ord_x[i] / 2; int a = (ord_x[i] & 1 ? -1 : 1); seg.apply(rk_y[2 * k], rk_y[2 * k + 1], a); auto [min, mincnt] = seg.prod_all(); ANS_TYPE dy = total - (min == 0 ? mincnt : 0); ANS_TYPE dx = X[i + 1] - X[i]; ANS += dx * dy; } return ANS; } };