This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/kdtree/kdtree_acted_monoid.hpp"
template <class ActedMonoid, typename XY>
struct KDTree_ActedMonoid {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename AM::X;
using A = typename AM::A;
static_assert(MX::commute);
// 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う
vc<tuple<XY, XY, XY, XY>> closed_range;
vc<X> dat;
vc<A> lazy;
vc<int> size;
vc<int> pos; // raw data -> index
int n, log;
KDTree_ActedMonoid(vc<XY> xs, vc<XY> ys, vc<X> vs) : n(len(xs)) {
assert(n > 0);
log = 0;
while ((1 << log) < n) ++log;
dat.resize(1 << (log + 1));
lazy.assign(1 << log, MA::unit());
closed_range.assign(1 << (log + 1), {infty<XY>, -infty<XY>, infty<XY>, -infty<XY>});
size.resize(1 << (log + 1));
vc<int> ids(n);
pos.resize(n);
FOR(i, n) ids[i] = i;
build(1, xs, ys, vs, ids);
}
void set(int i, const X& v) {
i = pos[i];
for (int k = log; k >= 1; k--) { push(i >> k); }
dat[i] = v;
while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]);
}
void multiply(int i, const X& v) {
i = pos[i];
for (int k = log; k >= 1; k--) { push(i >> k); }
dat[i] = MX::op(dat[i], v);
while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]);
}
// [xl, xr) x [yl, yr)
X prod(XY xl, XY xr, XY yl, XY yr) {
assert(xl <= xr && yl <= yr);
return prod_rec(1, xl, xr, yl, yr);
}
X prod_all() { return dat[1]; }
// [xl, xr) x [yl, yr)
void apply(XY xl, XY xr, XY yl, XY yr, A a) {
assert(xl <= xr && yl <= yr);
return apply_rec(1, xl, xr, yl, yr, a);
}
private:
void build(int idx, vc<XY> xs, vc<XY> ys, vc<X> vs, vc<int> ids, bool divx = true) {
int n = len(xs);
size[idx] = n;
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
xmin = ymin = infty<XY>;
xmax = ymax = -infty<XY>;
FOR(i, n) {
auto x = xs[i], y = ys[i];
chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y);
}
if (n == 1) {
dat[idx] = vs[0];
pos[ids[0]] = idx;
return;
}
int m = n / 2;
vc<int> I(n);
iota(all(I), 0);
if (divx) {
nth_element(I.begin(), I.begin() + m, I.end(), [xs](int i, int j) { return xs[i] < xs[j]; });
} else {
nth_element(I.begin(), I.begin() + m, I.end(), [ys](int i, int j) { return ys[i] < ys[j]; });
}
xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I), ids = rearrange(ids, I);
build(2 * idx + 0, {xs.begin(), xs.begin() + m}, {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, {ids.begin(), ids.begin() + m}, !divx);
build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()}, {vs.begin() + m, vs.end()}, {ids.begin() + m, ids.end()}, !divx);
dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
}
inline bool isin(XY x, XY y, int idx) {
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
return (xmin <= x && x <= xmax && ymin <= y && y <= ymax);
}
void apply_at(int idx, A a) {
dat[idx] = AM::act(dat[idx], a, size[idx]);
if (idx < (1 << log)) lazy[idx] = MA::op(lazy[idx], a);
}
void push(int idx) {
if (lazy[idx] == MA::unit()) return;
apply_at(2 * idx + 0, lazy[idx]), apply_at(2 * idx + 1, lazy[idx]);
lazy[idx] = MA::unit();
}
X prod_rec(int idx, XY x1, XY x2, XY y1, XY y2) {
if (idx >= len(closed_range)) return MX::unit();
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
if (xmin > xmax) return MX::unit();
if (x2 <= xmin || xmax < x1) return MX::unit();
if (y2 <= ymin || ymax < y1) return MX::unit();
if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return dat[idx]; }
push(idx);
return MX::op(prod_rec(2 * idx + 0, x1, x2, y1, y2), prod_rec(2 * idx + 1, x1, x2, y1, y2));
}
void apply_rec(int idx, XY x1, XY x2, XY y1, XY y2, A a) {
if (idx >= len(closed_range)) return;
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
if (xmin > xmax) return;
if (x2 <= xmin || xmax < x1) return;
if (y2 <= ymin || ymax < y1) return;
if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return apply_at(idx, a); }
push(idx);
apply_rec(2 * idx + 0, x1, x2, y1, y2, a);
apply_rec(2 * idx + 1, x1, x2, y1, y2, a);
dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
}
};
#line 1 "ds/kdtree/kdtree_acted_monoid.hpp"
template <class ActedMonoid, typename XY>
struct KDTree_ActedMonoid {
using AM = ActedMonoid;
using MX = typename AM::Monoid_X;
using MA = typename AM::Monoid_A;
using X = typename AM::X;
using A = typename AM::A;
static_assert(MX::commute);
// 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う
vc<tuple<XY, XY, XY, XY>> closed_range;
vc<X> dat;
vc<A> lazy;
vc<int> size;
vc<int> pos; // raw data -> index
int n, log;
KDTree_ActedMonoid(vc<XY> xs, vc<XY> ys, vc<X> vs) : n(len(xs)) {
assert(n > 0);
log = 0;
while ((1 << log) < n) ++log;
dat.resize(1 << (log + 1));
lazy.assign(1 << log, MA::unit());
closed_range.assign(1 << (log + 1), {infty<XY>, -infty<XY>, infty<XY>, -infty<XY>});
size.resize(1 << (log + 1));
vc<int> ids(n);
pos.resize(n);
FOR(i, n) ids[i] = i;
build(1, xs, ys, vs, ids);
}
void set(int i, const X& v) {
i = pos[i];
for (int k = log; k >= 1; k--) { push(i >> k); }
dat[i] = v;
while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]);
}
void multiply(int i, const X& v) {
i = pos[i];
for (int k = log; k >= 1; k--) { push(i >> k); }
dat[i] = MX::op(dat[i], v);
while (i > 1) i /= 2, dat[i] = MX::op(dat[2 * i], dat[2 * i + 1]);
}
// [xl, xr) x [yl, yr)
X prod(XY xl, XY xr, XY yl, XY yr) {
assert(xl <= xr && yl <= yr);
return prod_rec(1, xl, xr, yl, yr);
}
X prod_all() { return dat[1]; }
// [xl, xr) x [yl, yr)
void apply(XY xl, XY xr, XY yl, XY yr, A a) {
assert(xl <= xr && yl <= yr);
return apply_rec(1, xl, xr, yl, yr, a);
}
private:
void build(int idx, vc<XY> xs, vc<XY> ys, vc<X> vs, vc<int> ids, bool divx = true) {
int n = len(xs);
size[idx] = n;
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
xmin = ymin = infty<XY>;
xmax = ymax = -infty<XY>;
FOR(i, n) {
auto x = xs[i], y = ys[i];
chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y);
}
if (n == 1) {
dat[idx] = vs[0];
pos[ids[0]] = idx;
return;
}
int m = n / 2;
vc<int> I(n);
iota(all(I), 0);
if (divx) {
nth_element(I.begin(), I.begin() + m, I.end(), [xs](int i, int j) { return xs[i] < xs[j]; });
} else {
nth_element(I.begin(), I.begin() + m, I.end(), [ys](int i, int j) { return ys[i] < ys[j]; });
}
xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I), ids = rearrange(ids, I);
build(2 * idx + 0, {xs.begin(), xs.begin() + m}, {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, {ids.begin(), ids.begin() + m}, !divx);
build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()}, {vs.begin() + m, vs.end()}, {ids.begin() + m, ids.end()}, !divx);
dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
}
inline bool isin(XY x, XY y, int idx) {
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
return (xmin <= x && x <= xmax && ymin <= y && y <= ymax);
}
void apply_at(int idx, A a) {
dat[idx] = AM::act(dat[idx], a, size[idx]);
if (idx < (1 << log)) lazy[idx] = MA::op(lazy[idx], a);
}
void push(int idx) {
if (lazy[idx] == MA::unit()) return;
apply_at(2 * idx + 0, lazy[idx]), apply_at(2 * idx + 1, lazy[idx]);
lazy[idx] = MA::unit();
}
X prod_rec(int idx, XY x1, XY x2, XY y1, XY y2) {
if (idx >= len(closed_range)) return MX::unit();
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
if (xmin > xmax) return MX::unit();
if (x2 <= xmin || xmax < x1) return MX::unit();
if (y2 <= ymin || ymax < y1) return MX::unit();
if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return dat[idx]; }
push(idx);
return MX::op(prod_rec(2 * idx + 0, x1, x2, y1, y2), prod_rec(2 * idx + 1, x1, x2, y1, y2));
}
void apply_rec(int idx, XY x1, XY x2, XY y1, XY y2, A a) {
if (idx >= len(closed_range)) return;
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
if (xmin > xmax) return;
if (x2 <= xmin || xmax < x1) return;
if (y2 <= ymin || ymax < y1) return;
if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return apply_at(idx, a); }
push(idx);
apply_rec(2 * idx + 0, x1, x2, y1, y2, a);
apply_rec(2 * idx + 1, x1, x2, y1, y2, a);
dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]);
}
};