This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "ds/kdtree/kdtree.hpp"
template <typename XY> struct KDTree { // 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う vc<tuple<XY, XY, XY, XY>> closed_range; // 同じ座標の点も集約しないようにして、座標ごとに unique なデータを使う vc<int> dat; int n; KDTree(vc<XY> xs, vc<XY> ys) : n(len(xs)) { int log = 0; while ((1 << log) < n) ++log; dat.assign(1 << (log + 1), -1); closed_range.resize(1 << (log + 1)); vc<int> vs(n); iota(all(vs), 0); if (n > 0) build(1, xs, ys, vs); } // [xl, xr) x [yl, yr) vc<int> collect_rect(XY xl, XY xr, XY yl, XY yr, int max_size = -1) { assert(xl <= xr && yl <= yr); if (max_size == -1) max_size = n; vc<int> res; rect_rec(1, xl, xr, yl, yr, res, max_size); return res; } // 計算量保証なし、点群がランダムなら O(logN) // N = Q = 10^5 で、約 1 秒 // T は座標の 2 乗がオーバーフローしないものを使う。XY=int, T=long など。 // return するのは index template <typename T> int nearest_neighbor_search(XY x, XY y) { if (n == 0) return -1; pair<int, T> res = {-1, -1}; nns_rec(1, x, y, res); return res.fi; } private: void build(int idx, vc<XY> xs, vc<XY> ys, vc<int> vs, bool divx = true) { int n = len(xs); auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; xmin = ymin = infty<XY>; xmax = ymax = -infty<XY>; FOR(i, n) { auto x = xs[i], y = ys[i]; chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y); } if (n == 1) { dat[idx] = vs[0]; return; } int m = n / 2; vc<int> I(n); iota(all(I), 0); if (divx) { nth_element(I.begin(), I.begin() + m, I.end(), [xs](int i, int j) { return xs[i] < xs[j]; }); } else { nth_element(I.begin(), I.begin() + m, I.end(), [ys](int i, int j) { return ys[i] < ys[j]; }); } xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I); build(2 * idx + 0, {xs.begin(), xs.begin() + m}, {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, !divx); build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()}, {vs.begin() + m, vs.end()}, !divx); } void rect_rec(int i, XY x1, XY x2, XY y1, XY y2, vc<int>& res, int ms) { if (len(res) == ms) return; auto& [xmin, xmax, ymin, ymax] = closed_range[i]; if (x2 <= xmin || xmax < x1) return; if (y2 <= ymin || ymax < y1) return; if (dat[i] != -1) { res.eb(dat[i]); return; } rect_rec(2 * i + 0, x1, x2, y1, y2, res, ms); rect_rec(2 * i + 1, x1, x2, y1, y2, res, ms); } template <typename T> T best_dist_squared(int i, XY x, XY y) { auto& [xmin, xmax, ymin, ymax] = closed_range[i]; T dx = x - clamp(x, xmin, xmax); T dy = y - clamp(y, ymin, ymax); return dx * dx + dy * dy; } template <typename T> void nns_rec(int i, XY x, XY y, pair<int, T>& res) { T d = best_dist_squared<T>(i, x, y); if (res.fi != -1 && d >= res.se) return; if (dat[i] != -1) { res = {dat[i], d}; return; } T d0 = best_dist_squared<T>(2 * i + 0, x, y); T d1 = best_dist_squared<T>(2 * i + 1, x, y); if (d0 < d1) { nns_rec(2 * i + 0, x, y, res), nns_rec(2 * i + 1, x, y, res); } else { nns_rec(2 * i + 1, x, y, res), nns_rec(2 * i + 0, x, y, res); } } };
#line 1 "ds/kdtree/kdtree.hpp" template <typename XY> struct KDTree { // 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う vc<tuple<XY, XY, XY, XY>> closed_range; // 同じ座標の点も集約しないようにして、座標ごとに unique なデータを使う vc<int> dat; int n; KDTree(vc<XY> xs, vc<XY> ys) : n(len(xs)) { int log = 0; while ((1 << log) < n) ++log; dat.assign(1 << (log + 1), -1); closed_range.resize(1 << (log + 1)); vc<int> vs(n); iota(all(vs), 0); if (n > 0) build(1, xs, ys, vs); } // [xl, xr) x [yl, yr) vc<int> collect_rect(XY xl, XY xr, XY yl, XY yr, int max_size = -1) { assert(xl <= xr && yl <= yr); if (max_size == -1) max_size = n; vc<int> res; rect_rec(1, xl, xr, yl, yr, res, max_size); return res; } // 計算量保証なし、点群がランダムなら O(logN) // N = Q = 10^5 で、約 1 秒 // T は座標の 2 乗がオーバーフローしないものを使う。XY=int, T=long など。 // return するのは index template <typename T> int nearest_neighbor_search(XY x, XY y) { if (n == 0) return -1; pair<int, T> res = {-1, -1}; nns_rec(1, x, y, res); return res.fi; } private: void build(int idx, vc<XY> xs, vc<XY> ys, vc<int> vs, bool divx = true) { int n = len(xs); auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; xmin = ymin = infty<XY>; xmax = ymax = -infty<XY>; FOR(i, n) { auto x = xs[i], y = ys[i]; chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y); } if (n == 1) { dat[idx] = vs[0]; return; } int m = n / 2; vc<int> I(n); iota(all(I), 0); if (divx) { nth_element(I.begin(), I.begin() + m, I.end(), [xs](int i, int j) { return xs[i] < xs[j]; }); } else { nth_element(I.begin(), I.begin() + m, I.end(), [ys](int i, int j) { return ys[i] < ys[j]; }); } xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I); build(2 * idx + 0, {xs.begin(), xs.begin() + m}, {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, !divx); build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()}, {vs.begin() + m, vs.end()}, !divx); } void rect_rec(int i, XY x1, XY x2, XY y1, XY y2, vc<int>& res, int ms) { if (len(res) == ms) return; auto& [xmin, xmax, ymin, ymax] = closed_range[i]; if (x2 <= xmin || xmax < x1) return; if (y2 <= ymin || ymax < y1) return; if (dat[i] != -1) { res.eb(dat[i]); return; } rect_rec(2 * i + 0, x1, x2, y1, y2, res, ms); rect_rec(2 * i + 1, x1, x2, y1, y2, res, ms); } template <typename T> T best_dist_squared(int i, XY x, XY y) { auto& [xmin, xmax, ymin, ymax] = closed_range[i]; T dx = x - clamp(x, xmin, xmax); T dy = y - clamp(y, ymin, ymax); return dx * dx + dy * dy; } template <typename T> void nns_rec(int i, XY x, XY y, pair<int, T>& res) { T d = best_dist_squared<T>(i, x, y); if (res.fi != -1 && d >= res.se) return; if (dat[i] != -1) { res = {dat[i], d}; return; } T d0 = best_dist_squared<T>(2 * i + 0, x, y); T d1 = best_dist_squared<T>(2 * i + 1, x, y); if (d0 < d1) { nns_rec(2 * i + 0, x, y, res), nns_rec(2 * i + 1, x, y, res); } else { nns_rec(2 * i + 1, x, y, res), nns_rec(2 * i + 0, x, y, res); } } };