This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/kdtree/kdtree.hpp"
template <typename XY>
struct KDTree {
// 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う
vc<tuple<XY, XY, XY, XY>> closed_range;
// 同じ座標の点も集約しないようにして、座標ごとに unique なデータを使う
vc<int> dat;
int n;
KDTree(vc<XY> xs, vc<XY> ys) : n(len(xs)) {
int log = 0;
while ((1 << log) < n) ++log;
dat.assign(1 << (log + 1), -1);
closed_range.resize(1 << (log + 1));
vc<int> vs(n);
iota(all(vs), 0);
if (n > 0) build(1, xs, ys, vs);
}
// [xl, xr) x [yl, yr)
vc<int> collect_rect(XY xl, XY xr, XY yl, XY yr, int max_size = -1) {
assert(xl <= xr && yl <= yr);
if (max_size == -1) max_size = n;
vc<int> res;
rect_rec(1, xl, xr, yl, yr, res, max_size);
return res;
}
// 計算量保証なし、点群がランダムなら O(logN)
// N = Q = 10^5 で、約 1 秒
// T は座標の 2 乗がオーバーフローしないものを使う。XY=int, T=long など。
template <typename T>
int nearest_neighbor_search(XY x, XY y) {
if (n == 0) return -1;
pair<int, T> res = {-1, -1};
nns_rec(1, x, y, res);
return res.fi;
}
private:
void build(int idx, vc<XY> xs, vc<XY> ys, vc<int> vs, bool divx = true) {
int n = len(xs);
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
xmin = ymin = infty<XY>;
xmax = ymax = -infty<XY>;
FOR(i, n) {
auto x = xs[i], y = ys[i];
chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y);
}
if (n == 1) {
dat[idx] = vs[0];
return;
}
int m = n / 2;
vc<int> I(n);
iota(all(I), 0);
if (divx) {
nth_element(I.begin(), I.begin() + m, I.end(),
[xs](int i, int j) { return xs[i] < xs[j]; });
} else {
nth_element(I.begin(), I.begin() + m, I.end(),
[ys](int i, int j) { return ys[i] < ys[j]; });
}
xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I);
build(2 * idx + 0, {xs.begin(), xs.begin() + m},
{ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, !divx);
build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()},
{vs.begin() + m, vs.end()}, !divx);
}
void rect_rec(int i, XY x1, XY x2, XY y1, XY y2, vc<int>& res, int ms) {
if (len(res) == ms) return;
auto& [xmin, xmax, ymin, ymax] = closed_range[i];
if (x2 <= xmin || xmax < x1) return;
if (y2 <= ymin || ymax < y1) return;
if (dat[i] != -1) {
res.eb(dat[i]);
return;
}
rect_rec(2 * i + 0, x1, x2, y1, y2, res, ms);
rect_rec(2 * i + 1, x1, x2, y1, y2, res, ms);
}
template <typename T>
T best_dist_squared(int i, XY x, XY y) {
auto& [xmin, xmax, ymin, ymax] = closed_range[i];
T dx = x - clamp(x, xmin, xmax);
T dy = y - clamp(y, ymin, ymax);
return dx * dx + dy * dy;
}
template <typename T>
void nns_rec(int i, XY x, XY y, pair<int, T>& res) {
T d = best_dist_squared<T>(i, x, y);
if (res.fi != -1 && d >= res.se) return;
if (dat[i] != -1) {
res = {dat[i], d};
return;
}
T d0 = best_dist_squared<T>(2 * i + 0, x, y);
T d1 = best_dist_squared<T>(2 * i + 1, x, y);
if (d0 < d1) {
nns_rec(2 * i + 0, x, y, res), nns_rec(2 * i + 1, x, y, res);
} else {
nns_rec(2 * i + 1, x, y, res), nns_rec(2 * i + 0, x, y, res);
}
}
};
#line 1 "ds/kdtree/kdtree.hpp"
template <typename XY>
struct KDTree {
// 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う
vc<tuple<XY, XY, XY, XY>> closed_range;
// 同じ座標の点も集約しないようにして、座標ごとに unique なデータを使う
vc<int> dat;
int n;
KDTree(vc<XY> xs, vc<XY> ys) : n(len(xs)) {
int log = 0;
while ((1 << log) < n) ++log;
dat.assign(1 << (log + 1), -1);
closed_range.resize(1 << (log + 1));
vc<int> vs(n);
iota(all(vs), 0);
if (n > 0) build(1, xs, ys, vs);
}
// [xl, xr) x [yl, yr)
vc<int> collect_rect(XY xl, XY xr, XY yl, XY yr, int max_size = -1) {
assert(xl <= xr && yl <= yr);
if (max_size == -1) max_size = n;
vc<int> res;
rect_rec(1, xl, xr, yl, yr, res, max_size);
return res;
}
// 計算量保証なし、点群がランダムなら O(logN)
// N = Q = 10^5 で、約 1 秒
// T は座標の 2 乗がオーバーフローしないものを使う。XY=int, T=long など。
template <typename T>
int nearest_neighbor_search(XY x, XY y) {
if (n == 0) return -1;
pair<int, T> res = {-1, -1};
nns_rec(1, x, y, res);
return res.fi;
}
private:
void build(int idx, vc<XY> xs, vc<XY> ys, vc<int> vs, bool divx = true) {
int n = len(xs);
auto& [xmin, xmax, ymin, ymax] = closed_range[idx];
xmin = ymin = infty<XY>;
xmax = ymax = -infty<XY>;
FOR(i, n) {
auto x = xs[i], y = ys[i];
chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y);
}
if (n == 1) {
dat[idx] = vs[0];
return;
}
int m = n / 2;
vc<int> I(n);
iota(all(I), 0);
if (divx) {
nth_element(I.begin(), I.begin() + m, I.end(),
[xs](int i, int j) { return xs[i] < xs[j]; });
} else {
nth_element(I.begin(), I.begin() + m, I.end(),
[ys](int i, int j) { return ys[i] < ys[j]; });
}
xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I);
build(2 * idx + 0, {xs.begin(), xs.begin() + m},
{ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, !divx);
build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()},
{vs.begin() + m, vs.end()}, !divx);
}
void rect_rec(int i, XY x1, XY x2, XY y1, XY y2, vc<int>& res, int ms) {
if (len(res) == ms) return;
auto& [xmin, xmax, ymin, ymax] = closed_range[i];
if (x2 <= xmin || xmax < x1) return;
if (y2 <= ymin || ymax < y1) return;
if (dat[i] != -1) {
res.eb(dat[i]);
return;
}
rect_rec(2 * i + 0, x1, x2, y1, y2, res, ms);
rect_rec(2 * i + 1, x1, x2, y1, y2, res, ms);
}
template <typename T>
T best_dist_squared(int i, XY x, XY y) {
auto& [xmin, xmax, ymin, ymax] = closed_range[i];
T dx = x - clamp(x, xmin, xmax);
T dy = y - clamp(y, ymin, ymax);
return dx * dx + dy * dy;
}
template <typename T>
void nns_rec(int i, XY x, XY y, pair<int, T>& res) {
T d = best_dist_squared<T>(i, x, y);
if (res.fi != -1 && d >= res.se) return;
if (dat[i] != -1) {
res = {dat[i], d};
return;
}
T d0 = best_dist_squared<T>(2 * i + 0, x, y);
T d1 = best_dist_squared<T>(2 * i + 1, x, y);
if (d0 < d1) {
nns_rec(2 * i + 0, x, y, res), nns_rec(2 * i + 1, x, y, res);
} else {
nns_rec(2 * i + 1, x, y, res), nns_rec(2 * i + 0, x, y, res);
}
}
};