This documentation is automatically generated by online-judge-tools/verification-helper
#include "ds/fenwicktree/dual_fenwicktree_2d.hpp"
#include "alg/monoid/add.hpp"
template <typename Monoid, typename XY, bool SMALL_X = false>
struct Dual_FenwickTree_2D {
using G = Monoid;
using E = typename G::value_type;
static_assert(G::commute);
int N;
vc<XY> keyX;
XY min_X;
vc<int> indptr;
vc<XY> keyY;
vc<E> dat;
Dual_FenwickTree_2D(vc<XY>& X, vc<XY>& Y) { build(X, Y); }
inline int xtoi(XY x) {
if constexpr (SMALL_X) {
return clamp<int>(x - min_X, 0, N);
} else {
return LB(keyX, x);
}
}
inline int nxt(int i) { return i + ((i + 1) & -(i + 1)); }
inline int prev(int i) { return i - ((i + 1) & -(i + 1)); }
void build(vc<XY> X, vc<XY> Y) {
assert(len(X) == len(Y));
if constexpr (!SMALL_X) {
keyX = X;
UNIQUE(keyX);
N = len(keyX);
} else {
min_X = (len(X) == 0 ? 0 : MIN(X));
N = (len(X) == 0 ? 0 : MAX(X)) - min_X + 1;
keyX.resize(N);
FOR(i, N) keyX[i] = min_X + i;
}
auto I = argsort(Y);
X = rearrange(X, I), Y = rearrange(Y, I);
FOR(i, len(X)) X[i] = xtoi(X[i]);
vc<XY> last_y(N, -infty<XY> - 1);
indptr.assign(N + 1, 0);
FOR(i, len(X)) {
int ix = X[i];
XY y = Y[i];
while (ix < N) {
if (last_y[ix] == y) break;
last_y[ix] = y, indptr[ix + 1]++, ix = nxt(ix);
}
}
FOR(i, N) indptr[i + 1] += indptr[i];
keyY.resize(indptr.back());
dat.assign(indptr.back(), G::unit());
fill(all(last_y), -infty<XY> - 1);
vc<int> prog = indptr;
FOR(i, len(X)) {
int ix = X[i];
XY y = Y[i];
while (ix < N) {
if (last_y[ix] == y) break;
last_y[ix] = y, keyY[prog[ix]++] = y, ix = nxt(ix);
}
}
}
E get(XY x, XY y) {
E val = G::unit();
int i = xtoi(x);
assert(keyX[i] == x);
while (i < N) { val = G::op(val, get_i(i, y)), i = nxt(i); }
return val;
}
void apply(XY lx, XY rx, XY ly, XY ry, E val) {
int L = xtoi(lx) - 1, R = xtoi(rx) - 1;
E neg = G::inverse(val);
while (L < R) { apply_i(R, ly, ry, val), R = prev(R); }
while (R < L) { apply_i(L, ly, ry, neg), L = prev(L); }
}
private:
E get_i(int i, XY y) {
E val = G::unit();
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
auto it = keyY.begin() + LID;
int j = lower_bound(it, it + n, y) - it;
vc<int> Y_sub = {it, it + n};
while (j < n) { val = G::op(val, dat[LID + j]), j = nxt(j); }
return val;
}
void apply_i(int i, XY ly, XY ry, E val) {
E neg = G::inverse(val);
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
auto it = keyY.begin() + LID;
int L = lower_bound(it, it + n, ly) - it - 1;
int R = lower_bound(it, it + n, ry) - it - 1;
while (L < R) { dat[LID + R] = G::op(val, dat[LID + R]), R = prev(R); }
while (R < L) { dat[LID + L] = G::op(neg, dat[LID + L]), L = prev(L); }
}
};
#line 2 "alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 2 "ds/fenwicktree/dual_fenwicktree_2d.hpp"
template <typename Monoid, typename XY, bool SMALL_X = false>
struct Dual_FenwickTree_2D {
using G = Monoid;
using E = typename G::value_type;
static_assert(G::commute);
int N;
vc<XY> keyX;
XY min_X;
vc<int> indptr;
vc<XY> keyY;
vc<E> dat;
Dual_FenwickTree_2D(vc<XY>& X, vc<XY>& Y) { build(X, Y); }
inline int xtoi(XY x) {
if constexpr (SMALL_X) {
return clamp<int>(x - min_X, 0, N);
} else {
return LB(keyX, x);
}
}
inline int nxt(int i) { return i + ((i + 1) & -(i + 1)); }
inline int prev(int i) { return i - ((i + 1) & -(i + 1)); }
void build(vc<XY> X, vc<XY> Y) {
assert(len(X) == len(Y));
if constexpr (!SMALL_X) {
keyX = X;
UNIQUE(keyX);
N = len(keyX);
} else {
min_X = (len(X) == 0 ? 0 : MIN(X));
N = (len(X) == 0 ? 0 : MAX(X)) - min_X + 1;
keyX.resize(N);
FOR(i, N) keyX[i] = min_X + i;
}
auto I = argsort(Y);
X = rearrange(X, I), Y = rearrange(Y, I);
FOR(i, len(X)) X[i] = xtoi(X[i]);
vc<XY> last_y(N, -infty<XY> - 1);
indptr.assign(N + 1, 0);
FOR(i, len(X)) {
int ix = X[i];
XY y = Y[i];
while (ix < N) {
if (last_y[ix] == y) break;
last_y[ix] = y, indptr[ix + 1]++, ix = nxt(ix);
}
}
FOR(i, N) indptr[i + 1] += indptr[i];
keyY.resize(indptr.back());
dat.assign(indptr.back(), G::unit());
fill(all(last_y), -infty<XY> - 1);
vc<int> prog = indptr;
FOR(i, len(X)) {
int ix = X[i];
XY y = Y[i];
while (ix < N) {
if (last_y[ix] == y) break;
last_y[ix] = y, keyY[prog[ix]++] = y, ix = nxt(ix);
}
}
}
E get(XY x, XY y) {
E val = G::unit();
int i = xtoi(x);
assert(keyX[i] == x);
while (i < N) { val = G::op(val, get_i(i, y)), i = nxt(i); }
return val;
}
void apply(XY lx, XY rx, XY ly, XY ry, E val) {
int L = xtoi(lx) - 1, R = xtoi(rx) - 1;
E neg = G::inverse(val);
while (L < R) { apply_i(R, ly, ry, val), R = prev(R); }
while (R < L) { apply_i(L, ly, ry, neg), L = prev(L); }
}
private:
E get_i(int i, XY y) {
E val = G::unit();
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
auto it = keyY.begin() + LID;
int j = lower_bound(it, it + n, y) - it;
vc<int> Y_sub = {it, it + n};
while (j < n) { val = G::op(val, dat[LID + j]), j = nxt(j); }
return val;
}
void apply_i(int i, XY ly, XY ry, E val) {
E neg = G::inverse(val);
int LID = indptr[i], n = indptr[i + 1] - indptr[i];
auto it = keyY.begin() + LID;
int L = lower_bound(it, it + n, ly) - it - 1;
int R = lower_bound(it, it + n, ry) - it - 1;
while (L < R) { dat[LID + R] = G::op(val, dat[LID + R]), R = prev(R); }
while (R < L) { dat[LID + L] = G::op(neg, dat[LID + L]), L = prev(L); }
}
};