This documentation is automatically generated by online-judge-tools/verification-helper
#include "convex/minplus_convolution.hpp"
#include "convex/monotone_minima.hpp"
template <typename T>
vc<T> minplus_convolution_convex_convex(vc<T>& A, vc<T>& B) {
int n = len(A), m = len(B);
if (n == 0 && m == 0) return {};
vc<T> C(n + m - 1, infty<T>);
while (n > 0 && A[n - 1] == infty<T>) --n;
while (m > 0 && B[m - 1] == infty<T>) --m;
if (n == 0 && m == 0) return C;
int a = 0, b = 0;
while (a < n && A[a] == infty<T>) ++a;
while (b < m && B[b] == infty<T>) ++b;
C[a + b] = A[a] + B[b];
for (int i = a + b + 1; i < n + m - 1; ++i) {
if (b == m - 1 || (a != n - 1 && A[a + 1] + B[b] < A[a] + B[b + 1])) {
chmin(C[i], A[++a] + B[b]);
} else {
chmin(C[i], A[a] + B[++b]);
}
}
return C;
}
template <typename T>
vc<T> minplus_convolution_arbitrary_convex(vc<T>& A, vc<T>& B) {
int n = len(A), m = len(B);
if (n == 0 && m == 0) return {};
vc<T> C(n + m - 1, infty<T>);
while (m > 0 && B[m - 1] == infty<T>) --m;
if (m == 0) return C;
int b = 0;
while (b < m && B[b] == infty<T>) ++b;
auto select = [&](int i, int j, int k) -> bool {
if (i < k) return false;
if (i - j >= m - b) return true;
return A[j] + B[b + i - j] >= A[k] + B[b + i - k];
};
vc<int> J = monotone_minima(n + m - b - 1, n, select);
FOR(i, n + m - b - 1) {
T x = A[J[i]], y = B[b + i - J[i]];
if (x < infty<T> && y < infty<T>) C[b + i] = x + y;
}
return C;
}
template <typename T, bool convA, bool convB>
vc<T> minplus_convolution(vc<T>& A, vc<T>& B) {
static_assert(convA || convB);
if constexpr (convA && convB) return minplus_convolution_convex_convex(A, B);
if constexpr (convA && !convB)
return minplus_convolution_arbitrary_convex(B, A);
if constexpr (convB && !convA)
return minplus_convolution_arbitrary_convex(A, B);
return {};
}
#line 1 "convex/monotone_minima.hpp"
// select(i,j,k) : (i,j) -> (i,k) を行うかどうか
template <typename F>
vc<int> monotone_minima(int H, int W, F select) {
vc<int> min_col(H);
auto dfs = [&](auto& dfs, int x1, int x2, int y1, int y2) -> void {
if (x1 == x2) return;
int x = (x1 + x2) / 2;
int best_y = y1;
for (int y = y1 + 1; y < y2; ++y) {
if (select(x, best_y, y)) best_y = y;
}
min_col[x] = best_y;
dfs(dfs, x1, x, y1, best_y + 1);
dfs(dfs, x + 1, x2, best_y, y2);
};
dfs(dfs, 0, H, 0, W);
return min_col;
}
#line 2 "convex/minplus_convolution.hpp"
template <typename T>
vc<T> minplus_convolution_convex_convex(vc<T>& A, vc<T>& B) {
int n = len(A), m = len(B);
if (n == 0 && m == 0) return {};
vc<T> C(n + m - 1, infty<T>);
while (n > 0 && A[n - 1] == infty<T>) --n;
while (m > 0 && B[m - 1] == infty<T>) --m;
if (n == 0 && m == 0) return C;
int a = 0, b = 0;
while (a < n && A[a] == infty<T>) ++a;
while (b < m && B[b] == infty<T>) ++b;
C[a + b] = A[a] + B[b];
for (int i = a + b + 1; i < n + m - 1; ++i) {
if (b == m - 1 || (a != n - 1 && A[a + 1] + B[b] < A[a] + B[b + 1])) {
chmin(C[i], A[++a] + B[b]);
} else {
chmin(C[i], A[a] + B[++b]);
}
}
return C;
}
template <typename T>
vc<T> minplus_convolution_arbitrary_convex(vc<T>& A, vc<T>& B) {
int n = len(A), m = len(B);
if (n == 0 && m == 0) return {};
vc<T> C(n + m - 1, infty<T>);
while (m > 0 && B[m - 1] == infty<T>) --m;
if (m == 0) return C;
int b = 0;
while (b < m && B[b] == infty<T>) ++b;
auto select = [&](int i, int j, int k) -> bool {
if (i < k) return false;
if (i - j >= m - b) return true;
return A[j] + B[b + i - j] >= A[k] + B[b + i - k];
};
vc<int> J = monotone_minima(n + m - b - 1, n, select);
FOR(i, n + m - b - 1) {
T x = A[J[i]], y = B[b + i - J[i]];
if (x < infty<T> && y < infty<T>) C[b + i] = x + y;
}
return C;
}
template <typename T, bool convA, bool convB>
vc<T> minplus_convolution(vc<T>& A, vc<T>& B) {
static_assert(convA || convB);
if constexpr (convA && convB) return minplus_convolution_convex_convex(A, B);
if constexpr (convA && !convB)
return minplus_convolution_arbitrary_convex(B, A);
if constexpr (convB && !convA)
return minplus_convolution_arbitrary_convex(A, B);
return {};
}