This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "convex/fenchel.hpp"
#include "geo/convex_hull.hpp" #include "geo/base.hpp" // (L,R,a,b):傾きが [L,R) のとき (a,b) を通る template <typename T> vc<tuple<T, T, T, T>> Fenchel(vc<Point<T>> XY, string mode, bool sorted) { if (mode == "upper") { for (auto&& p: XY) p.y = -p.y; vc<tuple<T, T, T, T>> res; for (auto&& [L, R, a, b]: Fenchel(XY, "lower", sorted)) { T l = (R == infty<T> ? -infty<T> : 1 - R); T r = (L == -infty<T> ? infty<T> : 1 - L); chmax(l, -infty<T>), chmin(r, infty<T>); res.eb(l, r, a, -b); } reverse(all(res)); return res; } auto I = ConvexHull(XY, "lower", sorted); XY = rearrange(XY, I); vc<tuple<T, T, T, T>> res; ll lo = -infty<ll>; FOR(i, len(XY)) { T hi = infty<T>; if (i + 1 < len(XY)) { chmin(hi, floor(XY[i + 1].y - XY[i].y, XY[i + 1].x - XY[i].x) + 1); }; if (lo < hi) res.eb(lo, hi, XY[i].x, XY[i].y); lo = hi; } return res; }
#line 2 "geo/convex_hull.hpp" #line 2 "geo/base.hpp" template <typename T> struct Point { T x, y; Point() : x(0), y(0) {} template <typename A, typename B> Point(A x, B y) : x(x), y(y) {} template <typename A, typename B> Point(pair<A, B> p) : x(p.fi), y(p.se) {} Point operator+=(const Point p) { x += p.x, y += p.y; return *this; } Point operator-=(const Point p) { x -= p.x, y -= p.y; return *this; } Point operator+(Point p) const { return {x + p.x, y + p.y}; } Point operator-(Point p) const { return {x - p.x, y - p.y}; } bool operator==(Point p) const { return x == p.x && y == p.y; } bool operator!=(Point p) const { return x != p.x || y != p.y; } Point operator-() const { return {-x, -y}; } Point operator*(T t) const { return {x * t, y * t}; } Point operator/(T t) const { return {x / t, y / t}; } bool operator<(Point p) const { if (x != p.x) return x < p.x; return y < p.y; } T dot(Point other) { return x * other.x + y * other.y; } T det(Point other) { return x * other.y - y * other.x; } double norm() { return sqrtl(x * x + y * y); } double angle() { return atan2(y, x); } Point rotate(double theta) { static_assert(!is_integral<T>::value); double c = cos(theta), s = sin(theta); return Point{c * x - s * y, s * x + c * y}; } }; #ifdef FASTIO template <typename T> void rd(Point<T> &p) { fastio::rd(p.x), fastio::rd(p.y); } template <typename T> void wt(Point<T> &p) { fastio::wt(p.x); fastio::wt(' '); fastio::wt(p.y); } #endif // A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1 template <typename T> int ccw(Point<T> A, Point<T> B, Point<T> C) { T x = (B - A).det(C - A); if (x > 0) return 1; if (x < 0) return -1; return 0; } template <typename REAL, typename T, typename U> REAL dist(Point<T> A, Point<U> B) { REAL dx = REAL(A.x) - REAL(B.x); REAL dy = REAL(A.y) - REAL(B.y); return sqrt(dx * dx + dy * dy); } // ax+by+c template <typename T> struct Line { T a, b, c; Line(T a, T b, T c) : a(a), b(b), c(c) {} Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; } Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {} template <typename U> U eval(Point<U> P) { return a * P.x + b * P.y + c; } template <typename U> T eval(U x, U y) { return a * x + b * y + c; } // 同じ直線が同じ a,b,c で表現されるようにする void normalize() { static_assert(is_same_v<T, int> || is_same_v<T, long long>); T g = gcd(gcd(abs(a), abs(b)), abs(c)); a /= g, b /= g, c /= g; if (b < 0) { a = -a, b = -b, c = -c; } if (b == 0 && a < 0) { a = -a, b = -b, c = -c; } } bool is_parallel(Line other) { return a * other.b - b * other.a == 0; } bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; } }; template <typename T> struct Segment { Point<T> A, B; Segment(Point<T> A, Point<T> B) : A(A), B(B) {} Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {} bool contain(Point<T> C) { T det = (C - A).det(B - A); if (det != 0) return 0; return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0; } Line<T> to_Line() { return Line(A, B); } }; template <typename REAL> struct Circle { Point<REAL> O; REAL r; Circle(Point<REAL> O, REAL r) : O(O), r(r) {} Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {} template <typename T> bool contain(Point<T> p) { REAL dx = p.x - O.x, dy = p.y - O.y; return dx * dx + dy * dy <= r * r; } }; #line 4 "geo/convex_hull.hpp" // allow_180=true で同一座標点があるとこわれる // full なら I[0] が sorted で min になる template <typename T, bool allow_180 = false> vector<int> ConvexHull(vector<Point<T>>& XY, string mode = "full", bool sorted = false) { assert(mode == "full" || mode == "lower" || mode == "upper"); ll N = XY.size(); if (N == 1) return {0}; if (N == 2) { if (XY[0] < XY[1]) return {0, 1}; if (XY[1] < XY[0]) return {1, 0}; return {0}; } vc<int> I(N); if (sorted) { FOR(i, N) I[i] = i; } else { I = argsort(XY); } if constexpr (allow_180) { FOR(i, N - 1) assert(XY[i] != XY[i + 1]); } auto check = [&](ll i, ll j, ll k) -> bool { T det = (XY[j] - XY[i]).det(XY[k] - XY[i]); if constexpr (allow_180) return det >= 0; return det > T(0); }; auto calc = [&]() { vector<int> P; for (auto&& k: I) { while (P.size() > 1) { auto i = P[P.size() - 2]; auto j = P[P.size() - 1]; if (check(i, j, k)) break; P.pop_back(); } P.eb(k); } return P; }; vc<int> P; if (mode == "full" || mode == "lower") { vc<int> Q = calc(); P.insert(P.end(), all(Q)); } if (mode == "full" || mode == "upper") { if (!P.empty()) P.pop_back(); reverse(all(I)); vc<int> Q = calc(); P.insert(P.end(), all(Q)); } if (mode == "upper") reverse(all(P)); while (len(P) >= 2 && XY[P[0]] == XY[P.back()]) P.pop_back(); return P; } #line 3 "convex/fenchel.hpp" // (L,R,a,b):傾きが [L,R) のとき (a,b) を通る template <typename T> vc<tuple<T, T, T, T>> Fenchel(vc<Point<T>> XY, string mode, bool sorted) { if (mode == "upper") { for (auto&& p: XY) p.y = -p.y; vc<tuple<T, T, T, T>> res; for (auto&& [L, R, a, b]: Fenchel(XY, "lower", sorted)) { T l = (R == infty<T> ? -infty<T> : 1 - R); T r = (L == -infty<T> ? infty<T> : 1 - L); chmax(l, -infty<T>), chmin(r, infty<T>); res.eb(l, r, a, -b); } reverse(all(res)); return res; } auto I = ConvexHull(XY, "lower", sorted); XY = rearrange(XY, I); vc<tuple<T, T, T, T>> res; ll lo = -infty<ll>; FOR(i, len(XY)) { T hi = infty<T>; if (i + 1 < len(XY)) { chmin(hi, floor(XY[i + 1].y - XY[i].y, XY[i + 1].x - XY[i].x) + 1); }; if (lo < hi) res.eb(lo, hi, XY[i].x, XY[i].y); lo = hi; } return res; }