This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "convex/extended_lichao_1.hpp"
// https://codeforces.com/blog/entry/86731) // chmin(A[x],ax+b), A[x]+=ax+b, get A[x] // つかえた https://codeforces.com/contest/1120/problem/F template <bool MINIMIZE> struct Extended_LiChao_Tree_1 { // 入出力以外では minimize している struct F { ll a, b; F(ll a = 0, ll b = 0) : a(a), b(b) {} ll operator()(ll x) { return a * x + b; } void add(F &other) { if (b == infty<ll> || other.b == infty<ll>) { a = 0, b = infty<ll>; } else { a += other.a, b += other.b; } } }; vi X; vc<F> dat, lazy; int n, log, size; Extended_LiChao_Tree_1(vi X_) : X(X_) { UNIQUE(X); n = len(X), log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, F(0, infty<ll>)); lazy.assign(size << 1, F(0, 0)); } // O(logN). f(x) := min(f(x), ax+b). void chmin_line(ll a, ll b) { static_assert(MINIMIZE); chmin_line_rec(1, F(a, b), 0, n); } // O(logN). f(x) := max(f(x), ax+b). void chmax_line(ll a, ll b) { static_assert(!MINIMIZE); chmin_line_rec(1, F(-a, -b), 0, n); } // O(log^2N). f(x) := min(f(x), ax+b) for L<=x<R. // index ではなくて X[] の範囲. void chmin_segment(ll L, ll R, ll a, ll b) { static_assert(MINIMIZE); chmin_segment_rec(1, LB(X, L), LB(X, R), F(a, b), 0, n); } // O(log^2N). f(x) := max(f(x), ax+b) for L<=x<R. // index ではなくて X[] の範囲. void chmax_segment(ll L, ll R, ll a, ll b) { static_assert(!MINIMIZE); chmin_segment_rec(1, LB(X, L), LB(X, R), F(-a, -b), 0, n); } // O(1). f(x) := f(x)+ax+b. void add_line(ll a, ll b) { if (!MINIMIZE) a = -a, b = -b; add_segment_rec(1, 0, n, F(a, b), 0, n); } // O(log^2N). f(x) := f(x)+ax+b for L<=x<R. // index ではなくて X[] の範囲. void add_segment(ll L, ll R, ll a, ll b) { if (!MINIMIZE) a = -a, b = -b; add_segment_rec(1, LB(X, L), LB(X, R), F(a, b), 0, n); } ll query(ll x) { int idx = LB(X, x); assert(0 <= idx && idx < n && X[idx] == x); ll ans = query_rec(1, idx, 0, n, F(0, 0)); return MINIMIZE ? ans : -ans; } private: void push(int i) { dat[2 * i + 0].add(lazy[i]), lazy[2 * i + 0].add(lazy[i]); dat[2 * i + 1].add(lazy[i]), lazy[2 * i + 1].add(lazy[i]); lazy[i] = F(0, 0); } void chmin_segment_rec(int i, ll xl, ll xr, F f, ll node_l, ll node_r) { chmax(xl, node_l), chmin(xr, node_r); if (xl >= xr) return; if (node_l < xl || xr < node_r) { ll node_m = (node_l + node_r) / 2; push(i); chmin_segment_rec(2 * i + 0, xl, xr, f, node_l, node_m); chmin_segment_rec(2 * i + 1, xl, xr, f, node_m, node_r); return; } chmin_line_rec(i, f, node_l, node_r); } void chmin_line_rec(int i, F f, ll node_l, ll node_r) { F g = dat[i]; ll fl = f(X[node_l]), fr = f(X[node_r - 1]); ll gl = g(X[node_l]), gr = g(X[node_r - 1]); if (fl <= gl && fr <= gr) { dat[i] = f; return; } if (fl >= gl && fr >= gr) { return; } ll node_m = (node_l + node_r) / 2; ll fm = f(X[node_m]), gm = g(X[node_m]); push(i); if (fm < gm && fl < gl) dat[i] = f, chmin_line_rec(2 * i + 1, g, node_m, node_r); elif (fm < gm && fl >= gl) dat[i] = f, chmin_line_rec(2 * i + 0, g, node_l, node_m); elif (fm >= gm && gl < fl) chmin_line_rec(2 * i + 1, f, node_m, node_r); elif (fm >= gm && gl >= fl) chmin_line_rec(2 * i + 0, f, node_l, node_m); } void add_segment_rec(int i, ll xl, ll xr, F f, ll node_l, ll node_r) { chmax(xl, node_l), chmin(xr, node_r); if (xl >= xr) return; if (node_l < xl || xr < node_r) { ll node_m = (node_l + node_r) / 2; push(i); chmin_line_rec(2 * i + 0, dat[i], node_l, node_m); chmin_line_rec(2 * i + 1, dat[i], node_m, node_r); dat[i] = F(0, infty<ll>); add_segment_rec(2 * i + 0, xl, xr, f, node_l, node_m); add_segment_rec(2 * i + 1, xl, xr, f, node_m, node_r); return; } dat[i].add(f), lazy[i].add(f); } ll query_rec(int i, ll x, ll node_l, ll node_r, F laz) { ll res = dat[i](X[x]); if (res < infty<ll>) res += laz(X[x]); ll node_m = (node_l + node_r) / 2; laz.add(lazy[i]); if (node_r == node_l + 1) return res; if (x < node_m) { chmin(res, query_rec(2 * i + 0, x, node_l, node_m, laz)); } if (x >= node_m) { chmin(res, query_rec(2 * i + 1, x, node_m, node_r, laz)); } return res; } };
#line 1 "convex/extended_lichao_1.hpp" // https://codeforces.com/blog/entry/86731) // chmin(A[x],ax+b), A[x]+=ax+b, get A[x] // つかえた https://codeforces.com/contest/1120/problem/F template <bool MINIMIZE> struct Extended_LiChao_Tree_1 { // 入出力以外では minimize している struct F { ll a, b; F(ll a = 0, ll b = 0) : a(a), b(b) {} ll operator()(ll x) { return a * x + b; } void add(F &other) { if (b == infty<ll> || other.b == infty<ll>) { a = 0, b = infty<ll>; } else { a += other.a, b += other.b; } } }; vi X; vc<F> dat, lazy; int n, log, size; Extended_LiChao_Tree_1(vi X_) : X(X_) { UNIQUE(X); n = len(X), log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, F(0, infty<ll>)); lazy.assign(size << 1, F(0, 0)); } // O(logN). f(x) := min(f(x), ax+b). void chmin_line(ll a, ll b) { static_assert(MINIMIZE); chmin_line_rec(1, F(a, b), 0, n); } // O(logN). f(x) := max(f(x), ax+b). void chmax_line(ll a, ll b) { static_assert(!MINIMIZE); chmin_line_rec(1, F(-a, -b), 0, n); } // O(log^2N). f(x) := min(f(x), ax+b) for L<=x<R. // index ではなくて X[] の範囲. void chmin_segment(ll L, ll R, ll a, ll b) { static_assert(MINIMIZE); chmin_segment_rec(1, LB(X, L), LB(X, R), F(a, b), 0, n); } // O(log^2N). f(x) := max(f(x), ax+b) for L<=x<R. // index ではなくて X[] の範囲. void chmax_segment(ll L, ll R, ll a, ll b) { static_assert(!MINIMIZE); chmin_segment_rec(1, LB(X, L), LB(X, R), F(-a, -b), 0, n); } // O(1). f(x) := f(x)+ax+b. void add_line(ll a, ll b) { if (!MINIMIZE) a = -a, b = -b; add_segment_rec(1, 0, n, F(a, b), 0, n); } // O(log^2N). f(x) := f(x)+ax+b for L<=x<R. // index ではなくて X[] の範囲. void add_segment(ll L, ll R, ll a, ll b) { if (!MINIMIZE) a = -a, b = -b; add_segment_rec(1, LB(X, L), LB(X, R), F(a, b), 0, n); } ll query(ll x) { int idx = LB(X, x); assert(0 <= idx && idx < n && X[idx] == x); ll ans = query_rec(1, idx, 0, n, F(0, 0)); return MINIMIZE ? ans : -ans; } private: void push(int i) { dat[2 * i + 0].add(lazy[i]), lazy[2 * i + 0].add(lazy[i]); dat[2 * i + 1].add(lazy[i]), lazy[2 * i + 1].add(lazy[i]); lazy[i] = F(0, 0); } void chmin_segment_rec(int i, ll xl, ll xr, F f, ll node_l, ll node_r) { chmax(xl, node_l), chmin(xr, node_r); if (xl >= xr) return; if (node_l < xl || xr < node_r) { ll node_m = (node_l + node_r) / 2; push(i); chmin_segment_rec(2 * i + 0, xl, xr, f, node_l, node_m); chmin_segment_rec(2 * i + 1, xl, xr, f, node_m, node_r); return; } chmin_line_rec(i, f, node_l, node_r); } void chmin_line_rec(int i, F f, ll node_l, ll node_r) { F g = dat[i]; ll fl = f(X[node_l]), fr = f(X[node_r - 1]); ll gl = g(X[node_l]), gr = g(X[node_r - 1]); if (fl <= gl && fr <= gr) { dat[i] = f; return; } if (fl >= gl && fr >= gr) { return; } ll node_m = (node_l + node_r) / 2; ll fm = f(X[node_m]), gm = g(X[node_m]); push(i); if (fm < gm && fl < gl) dat[i] = f, chmin_line_rec(2 * i + 1, g, node_m, node_r); elif (fm < gm && fl >= gl) dat[i] = f, chmin_line_rec(2 * i + 0, g, node_l, node_m); elif (fm >= gm && gl < fl) chmin_line_rec(2 * i + 1, f, node_m, node_r); elif (fm >= gm && gl >= fl) chmin_line_rec(2 * i + 0, f, node_l, node_m); } void add_segment_rec(int i, ll xl, ll xr, F f, ll node_l, ll node_r) { chmax(xl, node_l), chmin(xr, node_r); if (xl >= xr) return; if (node_l < xl || xr < node_r) { ll node_m = (node_l + node_r) / 2; push(i); chmin_line_rec(2 * i + 0, dat[i], node_l, node_m); chmin_line_rec(2 * i + 1, dat[i], node_m, node_r); dat[i] = F(0, infty<ll>); add_segment_rec(2 * i + 0, xl, xr, f, node_l, node_m); add_segment_rec(2 * i + 1, xl, xr, f, node_m, node_r); return; } dat[i].add(f), lazy[i].add(f); } ll query_rec(int i, ll x, ll node_l, ll node_r, F laz) { ll res = dat[i](X[x]); if (res < infty<ll>) res += laz(X[x]); ll node_m = (node_l + node_r) / 2; laz.add(lazy[i]); if (node_r == node_l + 1) return res; if (x < node_m) { chmin(res, query_rec(2 * i + 0, x, node_l, node_m, laz)); } if (x >= node_m) { chmin(res, query_rec(2 * i + 1, x, node_m, node_r, laz)); } return res; } };