This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "convex/count_lattice_point_in_convex_polygon_polynomial.hpp"
#include "convex/line_min_function.hpp" #include "mod/floor_sum_of_linear_polynomial.hpp" // 格子点 (x,y) に対して x^iy^j の sum. i<=K, j<=L template <typename mint, int K1, int K2> array<array<mint, K2 + 1>, K1 + 1> count_lattice_point_in_convex_polygon_polynomial(ll L, ll R, vc<tuple<ll, ll, ll>> LINE) { vc<tuple<ll, ll, ll>> LINE1, LINE2; for (auto &[a, b, c]: LINE) { if (b == 0) { // ax<=c assert(a != 0); if (a > 0) { chmin(R, floor<ll>(c, a) + 1); } elif (a < 0) { chmax(L, ceil<ll>(-c, -a)); } } else { if (b > 0) { LINE2.eb(-a, c, b); } else { LINE1.eb(a, -c, -b); } } } if (L >= R) { return {}; } assert(!LINE1.empty()); assert(!LINE2.empty()); auto LOWER = line_max_function_rational(LINE1, L, R); auto UPPER = line_min_function_rational(LINE2, L, R); array<array<mint, K2 + 2>, K1 + 1> S; FOR(i, K1 + 1) FOR(j, K2 + 1) S[i][j] = 0; auto wk = [&](ll L, ll R, ll a1, ll b1, ll c1, ll a2, ll b2, ll c2) -> void { // 交点 t/s i128 s = i128(a2) * c1 - i128(a1) * c2; i128 t = i128(b1) * c2 - i128(b2) * c1; if (s == 0) { if (t > 0) return; } elif (s > 0) { // 上側の方が傾きが大きい i128 x = ceil<i128>(t, s); chmax(L, x); } else { i128 x = floor<i128>(-t, -s); chmin(R, x + 1); } if (L >= R) return; auto ADD = floor_sum_of_linear_polynomial<mint, K1, K2 + 1, ll>(L, R, a2, b2, c2); auto SUB = floor_sum_of_linear_polynomial<mint, K1, K2 + 1, ll>(L, R, a1, b1 - 1, c1); FOR(i, K1 + 1) FOR(j, K2 + 2) S[i][j] += ADD[i][j] - SUB[i][j]; }; merge_58(LOWER, UPPER, wk); array<array<mint, K2 + 1>, K1 + 1> ANS; FOR(i, K1 + 1) FOR(j, K2 + 1) ANS[i][j] = 0; static vvc<mint> CF; if (CF.empty()) { CF = faulhaber_formula_2d<mint>(K2); } FOR(i, K1 + 1) { FOR(j, K2 + 1) { FOR(k, j + 2) { ANS[i][j] += CF[j][k] * S[i][k]; } } } return ANS; }
#line 2 "geo/convex_hull.hpp" #line 2 "geo/base.hpp" template <typename T> struct Point { T x, y; Point() : x(0), y(0) {} template <typename A, typename B> Point(A x, B y) : x(x), y(y) {} template <typename A, typename B> Point(pair<A, B> p) : x(p.fi), y(p.se) {} Point operator+=(const Point p) { x += p.x, y += p.y; return *this; } Point operator-=(const Point p) { x -= p.x, y -= p.y; return *this; } Point operator+(Point p) const { return {x + p.x, y + p.y}; } Point operator-(Point p) const { return {x - p.x, y - p.y}; } bool operator==(Point p) const { return x == p.x && y == p.y; } bool operator!=(Point p) const { return x != p.x || y != p.y; } Point operator-() const { return {-x, -y}; } Point operator*(T t) const { return {x * t, y * t}; } Point operator/(T t) const { return {x / t, y / t}; } bool operator<(Point p) const { if (x != p.x) return x < p.x; return y < p.y; } T dot(const Point& other) const { return x * other.x + y * other.y; } T det(const Point& other) const { return x * other.y - y * other.x; } double norm() { return sqrtl(x * x + y * y); } double angle() { return atan2(y, x); } Point rotate(double theta) { static_assert(!is_integral<T>::value); double c = cos(theta), s = sin(theta); return Point{c * x - s * y, s * x + c * y}; } Point rot90(bool ccw) { return (ccw ? Point{-y, x} : Point{y, -x}); } }; #ifdef FASTIO template <typename T> void rd(Point<T>& p) { fastio::rd(p.x), fastio::rd(p.y); } template <typename T> void wt(Point<T>& p) { fastio::wt(p.x); fastio::wt(' '); fastio::wt(p.y); } #endif // A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1 template <typename T> int ccw(Point<T> A, Point<T> B, Point<T> C) { T x = (B - A).det(C - A); if (x > 0) return 1; if (x < 0) return -1; return 0; } template <typename REAL, typename T, typename U> REAL dist(Point<T> A, Point<U> B) { REAL dx = REAL(A.x) - REAL(B.x); REAL dy = REAL(A.y) - REAL(B.y); return sqrt(dx * dx + dy * dy); } // ax+by+c template <typename T> struct Line { T a, b, c; Line(T a, T b, T c) : a(a), b(b), c(c) {} Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; } Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {} template <typename U> U eval(Point<U> P) { return a * P.x + b * P.y + c; } template <typename U> T eval(U x, U y) { return a * x + b * y + c; } // 同じ直線が同じ a,b,c で表現されるようにする void normalize() { static_assert(is_same_v<T, int> || is_same_v<T, long long>); T g = gcd(gcd(abs(a), abs(b)), abs(c)); a /= g, b /= g, c /= g; if (b < 0) { a = -a, b = -b, c = -c; } if (b == 0 && a < 0) { a = -a, b = -b, c = -c; } } bool is_parallel(Line other) { return a * other.b - b * other.a == 0; } bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; } }; template <typename T> struct Segment { Point<T> A, B; Segment(Point<T> A, Point<T> B) : A(A), B(B) {} Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {} bool contain(Point<T> C) { T det = (C - A).det(B - A); if (det != 0) return 0; return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0; } Line<T> to_Line() { return Line(A, B); } }; template <typename REAL> struct Circle { Point<REAL> O; REAL r; Circle(Point<REAL> O, REAL r) : O(O), r(r) {} Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {} template <typename T> bool contain(Point<T> p) { REAL dx = p.x - O.x, dy = p.y - O.y; return dx * dx + dy * dy <= r * r; } }; #line 4 "geo/convex_hull.hpp" // allow_180=true で同一座標点があるとこわれる // full なら I[0] が sorted で min になる template <typename T, bool allow_180 = false> vector<int> ConvexHull(vector<Point<T>>& XY, string mode = "full", bool sorted = false) { assert(mode == "full" || mode == "lower" || mode == "upper"); ll N = XY.size(); if (N == 1) return {0}; if (N == 2) { if (XY[0] < XY[1]) return {0, 1}; if (XY[1] < XY[0]) return {1, 0}; return {0}; } vc<int> I(N); if (sorted) { FOR(i, N) I[i] = i; } else { I = argsort(XY); } if constexpr (allow_180) { FOR(i, N - 1) assert(XY[i] != XY[i + 1]); } auto check = [&](ll i, ll j, ll k) -> bool { T det = (XY[j] - XY[i]).det(XY[k] - XY[i]); if constexpr (allow_180) return det >= 0; return det > T(0); }; auto calc = [&]() { vector<int> P; for (auto&& k: I) { while (P.size() > 1) { auto i = P[P.size() - 2]; auto j = P[P.size() - 1]; if (check(i, j, k)) break; P.pop_back(); } P.eb(k); } return P; }; vc<int> P; if (mode == "full" || mode == "lower") { vc<int> Q = calc(); P.insert(P.end(), all(Q)); } if (mode == "full" || mode == "upper") { if (!P.empty()) P.pop_back(); reverse(all(I)); vc<int> Q = calc(); P.insert(P.end(), all(Q)); } if (mode == "upper") reverse(all(P)); while (len(P) >= 2 && XY[P[0]] == XY[P.back()]) P.pop_back(); return P; } #line 2 "convex/line_min_function.hpp" // 1 次関数の max を [L,R,a,b] の列として出力 // https://qoj.ac/contest/1576/problem/8505 template <typename Re, typename T> vc<tuple<Re, Re, Re, Re>> line_min_function_real(vc<pair<T, T>> LINE) { assert(!LINE.empty()); using P = Point<T>; vc<P> point; for (auto& [x, y]: LINE) point.eb(P(x, y)); auto I = ConvexHull(point, "lower"); point = rearrange(point, I); int N = len(point); if (N >= 2 && point[N - 1].x == point[N - 2].x) { POP(point), --N; } reverse(all(point)); // 傾きは大きい方から Re l = -infty<Re>; vc<tuple<Re, Re, Re, Re>> ANS; FOR(i, N) { Re r = infty<Re>; auto [a, b] = point[i]; if (i + 1 < N) { auto [c, d] = point[i + 1]; if (a == c) continue; assert(a > c); r = Re(d - b) / (a - c); chmax(r, l), chmin(r, infty<Re>); } if (l < r) ANS.eb(l, r, a, b), l = r; } return ANS; } // 1 次関数の max を [L,R,a,b] の列として出力 template <typename Re, typename T> vc<tuple<Re, Re, Re, Re>> line_max_function_real(vc<pair<T, T>> LINE) { assert(!LINE.empty()); for (auto& [a, b]: LINE) a = -a, b = -b; auto ANS = line_min_function_real<Re, T>(LINE); for (auto& [l, r, a, b]: ANS) a = -a, b = -b; return ANS; } // LINE(a,b,c): y=(ax+b)/c, 評価点は整数 // 1 次関数の min を [L,R,a,b,c] の列として出力 // オーバーフロー安全 vc<tuple<ll, ll, ll, ll, ll>> line_min_function_rational(vc<tuple<ll, ll, ll>> LINE, ll L, ll R) { // 傾き降順 sort(all(LINE), [&](auto& L, auto& R) -> bool { auto& [a1, b1, c1] = L; auto& [a2, b2, c2] = R; return i128(a1) * c2 > i128(a2) * c1; }); vc<tuple<ll, ll, ll, ll, ll>> ANS; for (auto& [a2, b2, c2]: LINE) { while (1) { if (ANS.empty()) { ANS.eb(L, R, a2, b2, c2); break; } auto& [L1, R1, a1, b1, c1] = ANS.back(); i128 s = i128(c2) * a1 - i128(a2) * c1; // >= 0 i128 t = i128(b2) * c1 - i128(b1) * c2; if (s == 0) { // 平行なので小さい方だけを残す if (t >= 0) break; ANS.pop_back(); if (len(ANS)) get<1>(ANS.back()) = R; continue; } i128 x = ceil<i128>(t, s); // x 以上で 2 の方が下に来る if (x <= L1) { ANS.pop_back(); continue; } if (x < R) { R1 = x; ANS.eb(x, R, a2, b2, c2); break; } else { break; } } } return ANS; } // LINE(a,b,c): y=(ax+b)/c, 評価点は整数 // 1 次関数の max を [L,R,a,b,c] の列として出力 // オーバーフロー安全 vc<tuple<ll, ll, ll, ll, ll>> line_max_function_rational(vc<tuple<ll, ll, ll>> LINE, ll L, ll R) { for (auto& [a, b, c]: LINE) a = -a, b = -b; auto ANS = line_min_function_rational(LINE, L, R); for (auto& [L, R, a, b, c]: ANS) a = -a, b = -b; return ANS; } // LINE(a,b): y=ax+b, 評価点は整数 // 1 次関数の min を [L,R,a,b] の列として出力 // オーバーフロー安全 vc<tuple<ll, ll, ll, ll>> line_min_function_integer(vc<pair<ll, ll>> LINE, ll L, ll R) { // 傾き降順 sort(all(LINE), [&](auto& L, auto& R) -> bool { auto& [a1, b1] = L; auto& [a2, b2] = R; return a1 > a2; }); vc<tuple<ll, ll, ll, ll>> ANS; for (auto& [a2, b2]: LINE) { while (1) { if (ANS.empty()) { ANS.eb(L, R, a2, b2); break; } auto& [L1, R1, a1, b1] = ANS.back(); if (a1 == a2) { if (b1 <= b2) break; ANS.pop_back(); if (len(ANS)) get<1>(ANS.back()) = R; continue; } ll x = ceil<ll>(b2 - b1, a1 - a2); // x 以上で 2 の方が下に来る if (x <= L1) { ANS.pop_back(); continue; } if (x < R) { R1 = x; ANS.eb(x, R, a2, b2); break; } else { break; } } } return ANS; } // LINE(a,b,c): y=(ax+b)/c, 評価点は整数 // 1 次関数の min を [L,R,a,b,c] の列として出力 // c>0, (ax+b)c がオーバーフローしない, vc<tuple<ll, ll, ll, ll>> line_max_function_integer(vc<pair<ll, ll>> LINE, ll L, ll R) { for (auto& [a, b]: LINE) a = -a, b = -b; auto ANS = line_min_function_integer(LINE, L, R); for (auto& [L, R, a, b]: ANS) a = -a, b = -b; return ANS; } // (L,R,func) の下側と上側をマージするときなどに使う用 template <typename T> vc<tuple<T, T, T, T, T, T>> merge_46(vc<tuple<T, T, T, T>> A, vc<tuple<T, T, T, T>> B) { vc<tuple<T, T, T, T, T, T>> ANS; reverse(all(A)); reverse(all(B)); while (len(A) && len(B)) { auto& [l1, r1, a1, b1] = A.back(); auto& [l2, r2, a2, b2] = B.back(); assert(l1 == l2); T r = min(r1, r2); ANS.eb(l1, r, a1, b1, a2, b2); l1 = r, l2 = r; if (r1 == r) POP(A); if (r2 == r) POP(B); }; return ANS; } // (L,R,func) の下側と上側をマージするときなどに使う用 // f(L,R,a1,b1,a2,b2) template <typename T, typename F> void merge_46(const vc<tuple<T, T, T, T>>& A, const vc<tuple<T, T, T, T>>& B, F f) { int i = 0, j = 0; while (i < len(A) && j < len(B)) { auto& [l1, r1, a1, b1] = A[i]; auto& [l2, r2, a2, b2] = B[j]; T l = max(l1, l2), r = min(r1, r2); if (l < r) f(l, r, a1, b1, a2, b2); (r1 < r2 ? i : j)++; } } // (L,R,func) の下側と上側をマージするときなどに使う用 // f(L,R,a1,b1,a2,b2) template <typename T, typename F> void merge_58(const vc<tuple<T, T, T, T, T>>& A, const vc<tuple<T, T, T, T, T>>& B, F f) { int i = 0, j = 0; while (i < len(A) && j < len(B)) { auto& [l1, r1, a1, b1, c1] = A[i]; auto& [l2, r2, a2, b2, c2] = B[j]; T l = max(l1, l2), r = min(r1, r2); if (l < r) f(l, r, a1, b1, c1, a2, b2, c2); (r1 < r2 ? i : j)++; } } #line 1 "mod/floor_sum_of_linear_polynomial.hpp" #line 2 "alg/monoid_pow.hpp" // chat gpt template <typename U, typename Arg1, typename Arg2> struct has_power_method { private: // ヘルパー関数の実装 template <typename V, typename A1, typename A2> static auto check(int) -> decltype(std::declval<V>().power(std::declval<A1>(), std::declval<A2>()), std::true_type{}); template <typename, typename, typename> static auto check(...) -> std::false_type; public: // メソッドの有無を表す型 static constexpr bool value = decltype(check<U, Arg1, Arg2>(0))::value; }; template <typename Monoid> typename Monoid::X monoid_pow(typename Monoid::X x, ll exp) { using X = typename Monoid::X; if constexpr (has_power_method<Monoid, X, ll>::value) { return Monoid::power(x, exp); } else { assert(exp >= 0); X res = Monoid::unit(); while (exp) { if (exp & 1) res = Monoid::op(res, x); x = Monoid::op(x, x); exp >>= 1; } return res; } } #line 2 "mod/floor_monoid_product.hpp" // https://yukicoder.me/submissions/883884 // https://qoj.ac/contest/1411/problem/7620 // U は範囲内で ax+b がオーバーフローしない程度 // yyy x yyyy x ... yyy x yyy (x を N 個) // k 個目の x までに floor(ak+b,m) 個の y がある // my<=ax+b における lattice path における辺の列と見なせる template <typename Monoid, typename X, typename U> X floor_monoid_product(X x, X y, U N, U a, U b, U m) { U c = (a * N + b) / m; X pre = Monoid::unit(), suf = Monoid::unit(); while (1) { const U p = a / m, q = b / m; a %= m, b %= m; x = Monoid::op(x, monoid_pow<Monoid>(y, p)); pre = Monoid::op(pre, monoid_pow<Monoid>(y, q)); c -= (p * N + q); if (c == 0) break; const U d = (m * c - b - 1) / a + 1; suf = Monoid::op(y, Monoid::op(monoid_pow<Monoid>(x, N - d), suf)); b = m - b - 1 + a, N = c - 1, c = d; swap(m, a), swap(x, y); } x = monoid_pow<Monoid>(x, N); return Monoid::op(Monoid::op(pre, x), suf); } #line 1 "alg/monoid/monoid_for_floor_sum.hpp" // sum i^k1floor^k2: floor path で (x,y) から x 方向に進むときに x^k1y^k2 を足す template <typename T, int K1, int K2> struct Monoid_for_floor_sum { using ARR = array<array<T, K2 + 1>, K1 + 1>; struct Data { ARR dp; T dx, dy; }; using value_type = Data; using X = value_type; static X op(X a, X b) { static constexpr int n = max(K1, K2); static T comb[n + 1][n + 1]; if (comb[0][0] != T(1)) { comb[0][0] = T(1); FOR(i, n) FOR(j, i + 1) { comb[i + 1][j] += comb[i][j], comb[i + 1][j + 1] += comb[i][j]; } } array<T, K1 + 1> pow_x; array<T, K2 + 1> pow_y; pow_x[0] = 1, pow_y[0] = 1; FOR(i, K1) pow_x[i + 1] = pow_x[i] * a.dx; FOR(i, K2) pow_y[i + 1] = pow_y[i] * a.dy; // +dy FOR(i, K1 + 1) { FOR_R(j, K2 + 1) { T x = b.dp[i][j]; FOR(k, j + 1, K2 + 1) b.dp[i][k] += comb[k][j] * pow_y[k - j] * x; } } // +dx FOR(j, K2 + 1) { FOR_R(i, K1 + 1) { FOR(k, i, K1 + 1) a.dp[k][j] += comb[k][i] * pow_x[k - i] * b.dp[i][j]; } } a.dx += b.dx, a.dy += b.dy; return a; } static X to_x() { X x = unit(); x.dp[0][0] = 1, x.dx = 1; return x; } static X to_y() { X x = unit(); x.dy = 1; return x; } static constexpr X unit() { return {ARR{}, T(0), T(0)}; } static constexpr bool commute = 0; }; #line 4 "mod/floor_sum_of_linear_polynomial.hpp" // 全部非負, T は答, U は ax+b がオーバーフローしない template <typename T, int K1, int K2, typename U> array<array<T, K2 + 1>, K1 + 1> floor_sum_of_linear_polynomial_nonnegative(U N, U a, U b, U mod) { static_assert(is_same_v<U, u64> || is_same_v<U, u128>); assert(a == 0 || N < (U(-1) - b) / a); using Mono = Monoid_for_floor_sum<T, K1, K2>; auto x = floor_monoid_product<Mono>(Mono::to_x(), Mono::to_y(), N, a, b, mod); return x.dp; }; // sum_{L<=x<R} x^i floor(ax+b,mod)^j // a+bx が I, U でオーバーフローしない template <typename T, int K1, int K2, typename I> array<array<T, K2 + 1>, K1 + 1> floor_sum_of_linear_polynomial(I L, I R, I a, I b, I mod) { static_assert(is_same_v<I, ll> || is_same_v<I, i128>); assert(L <= R && mod > 0); if (a < 0) { auto ANS = floor_sum_of_linear_polynomial<T, K1, K2, I>(-R + 1, -L + 1, -a, b, mod); FOR(i, K1 + 1) { if (i % 2 == 1) { FOR(j, K2 + 1) ANS[i][j] = -ANS[i][j]; } } return ANS; } assert(a >= 0); I ADD_X = L; I N = R - L; b += a * L; I ADD_Y = floor<I>(b, mod); b -= ADD_Y * mod; assert(a >= 0 && b >= 0); using Mono = Monoid_for_floor_sum<T, K1, K2>; using Data = typename Mono::Data; using U = std::conditional_t<is_same_v<I, ll>, i128, u128>; Data A = floor_monoid_product<Mono, Data, U>(Mono::to_x(), Mono::to_y(), N, a, b, mod); Data offset = Mono::unit(); offset.dx = T(ADD_X), offset.dy = T(ADD_Y); A = Mono::op(offset, A); return A.dp; }; #line 3 "convex/count_lattice_point_in_convex_polygon_polynomial.hpp" // 格子点 (x,y) に対して x^iy^j の sum. i<=K, j<=L template <typename mint, int K1, int K2> array<array<mint, K2 + 1>, K1 + 1> count_lattice_point_in_convex_polygon_polynomial(ll L, ll R, vc<tuple<ll, ll, ll>> LINE) { vc<tuple<ll, ll, ll>> LINE1, LINE2; for (auto &[a, b, c]: LINE) { if (b == 0) { // ax<=c assert(a != 0); if (a > 0) { chmin(R, floor<ll>(c, a) + 1); } elif (a < 0) { chmax(L, ceil<ll>(-c, -a)); } } else { if (b > 0) { LINE2.eb(-a, c, b); } else { LINE1.eb(a, -c, -b); } } } if (L >= R) { return {}; } assert(!LINE1.empty()); assert(!LINE2.empty()); auto LOWER = line_max_function_rational(LINE1, L, R); auto UPPER = line_min_function_rational(LINE2, L, R); array<array<mint, K2 + 2>, K1 + 1> S; FOR(i, K1 + 1) FOR(j, K2 + 1) S[i][j] = 0; auto wk = [&](ll L, ll R, ll a1, ll b1, ll c1, ll a2, ll b2, ll c2) -> void { // 交点 t/s i128 s = i128(a2) * c1 - i128(a1) * c2; i128 t = i128(b1) * c2 - i128(b2) * c1; if (s == 0) { if (t > 0) return; } elif (s > 0) { // 上側の方が傾きが大きい i128 x = ceil<i128>(t, s); chmax(L, x); } else { i128 x = floor<i128>(-t, -s); chmin(R, x + 1); } if (L >= R) return; auto ADD = floor_sum_of_linear_polynomial<mint, K1, K2 + 1, ll>(L, R, a2, b2, c2); auto SUB = floor_sum_of_linear_polynomial<mint, K1, K2 + 1, ll>(L, R, a1, b1 - 1, c1); FOR(i, K1 + 1) FOR(j, K2 + 2) S[i][j] += ADD[i][j] - SUB[i][j]; }; merge_58(LOWER, UPPER, wk); array<array<mint, K2 + 1>, K1 + 1> ANS; FOR(i, K1 + 1) FOR(j, K2 + 1) ANS[i][j] = 0; static vvc<mint> CF; if (CF.empty()) { CF = faulhaber_formula_2d<mint>(K2); } FOR(i, K1 + 1) { FOR(j, K2 + 1) { FOR(k, j + 2) { ANS[i][j] += CF[j][k] * S[i][k]; } } } return ANS; }