This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub maspypy/library
#include "bigint/binary.hpp"
#include "poly/convolution.hpp" struct BigInteger_Binary { static constexpr int LOG = 30; static constexpr int MOD = 1 << LOG; using bint = BigInteger_Binary; int sgn; vc<int> dat; BigInteger_Binary() : sgn(0) {} BigInteger_Binary(i128 val) { if (val == 0) { sgn = 0; return; } sgn = 1; if (val < 0) sgn = -1, val = -val; while (val > 0) { dat.eb(val % MOD); val /= MOD; } } BigInteger_Binary(string s) { assert(!s.empty()); sgn = 1; if (s[0] == '-') { sgn = -1; s.erase(s.begin()); assert(!s.empty()); } if (s[0] == '0') { sgn = 0; return; } reverse(all(s)); int n = len(s); int m = ceil(n, LOG); dat.assign(m, 0); FOR(i, n) { dat[i / LOG] += ((s[i] - '0') << (i % LOG)); } } bint &operator=(const bint &p) { sgn = p.sgn; dat = p.dat; return *this; } bool operator<(const bint &p) const { if (sgn != p.sgn) return sgn < p.sgn; if (sgn == 0) return false; if (len(dat) != len(p.dat)) { if (sgn == 1) return len(dat) < len(p.dat); if (sgn == -1) return len(dat) > len(p.dat); } FOR_R(i, len(dat)) { if (dat[i] == p.dat[i]) continue; if (sgn == 1) return dat[i] < p.dat[i]; if (sgn == -1) return dat[i] > p.dat[i]; } return false; } bool operator>(const bint &p) const { return p < *this; } bool operator<=(const bint &p) const { return !(*this > p); } bool operator>=(const bint &p) const { return !(*this < p); } bint &operator+=(const bint p) { if (sgn == 0) { return *this = p; } if (p.sgn == 0) { return *this; } if (sgn != p.sgn) { *this -= (-p); return *this; } int n = max(len(dat), len(p.dat)); dat.resize(n + 1); FOR(i, n) { if (i < len(p.dat)) dat[i] += p.dat[i]; if (dat[i] >= MOD) dat[i] -= MOD, dat[i + 1] += 1; } while (len(dat) && dat.back() == 0) dat.pop_back(); return *this; } bint &operator-=(const bint p) { if (sgn == 0) return *this = (-p); if (p.sgn == 0) return *this; if (sgn != p.sgn) { *this += (-p); return *this; } if ((sgn == 1 && *this < p) || (sgn == -1 && *this > p)) { *this = p - *this; sgn = -sgn; return *this; } FOR(i, len(p.dat)) { dat[i] -= p.dat[i]; } FOR(i, len(dat) - 1) { if (dat[i] < 0) dat[i] += MOD, dat[i + 1] -= 1; } while (len(dat) && dat.back() == 0) { dat.pop_back(); } if (dat.empty()) sgn = 0; return *this; } bint &operator*=(const bint &p) { sgn *= p.sgn; dat = convolve(dat, p.dat); return *this; } // bint &operator/=(const bint &p) { return *this; } bint operator-() const { bint p = *this; p.sgn *= -1; return p; } bint operator+(const bint &p) const { return bint(*this) += p; } bint operator-(const bint &p) const { return bint(*this) -= p; } bint operator*(const bint &p) const { return bint(*this) *= p; } // bint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const bint &p) const { return (sgn == p.sgn && dat == p.dat); } bool operator!=(const bint &p) const { return (sgn != p.sgn || dat != p.dat); } vc<int> convolve(const vc<int> &a, const vc<int> &b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 500) { vc<int> c(n + m - 1); u128 x = 0; FOR(k, n + m - 1) { int s = max<int>(0, k + 1 - m), t = min<int>(k, n - 1); FOR(i, s, t + 1) { x += u64(a[i]) * b[k - i]; } c[k] = x % MOD, x = x / MOD; } while (x > 0) { c.eb(x % MOD), x = x / MOD; } return c; } static constexpr int p0 = 167772161; static constexpr int p1 = 469762049; static constexpr int p2 = 754974721; using mint0 = modint<p0>; using mint1 = modint<p1>; using mint2 = modint<p2>; vc<mint0> a0(all(a)), b0(all(b)); vc<mint1> a1(all(a)), b1(all(b)); vc<mint2> a2(all(a)), b2(all(b)); auto c0 = convolution_ntt<mint0>(a0, b0); auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); vc<int> c(len(c0)); u128 x = 0; FOR(i, n + m - 1) { x += CRT3<u128, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); c[i] = x % MOD, x = x / MOD; } while (x) { c.eb(x % MOD), x = x / MOD; } return c; } string to_string() { if (dat.empty()) return "0"; string s; for (int x: dat) { FOR(LOG) { s += '0' + (x & 1); x /= 2; } } while (s.back() == '0') s.pop_back(); if (sgn == -1) s += '-'; reverse(all(s)); return s; } string to_decimal_string() { assert(0); return ""; } // https://codeforces.com/contest/477/problem/D pair<bint, int> divmod(int p) { assert(dat.empty() || sgn == 1); vc<int> after; ll rm = 0; FOR_R(i, len(dat)) { rm = rm * MOD + dat[i]; after.eb(rm / p); rm = rm % p; } reverse(all(after)); while (len(after) && after.back() == 0) POP(after); bint q; q.sgn = 1; q.dat = after; return {q, rm}; } vc<int> base_p_representation(int p) { vc<u32> A(all(dat)); vc<int> res; while (1) { while (len(A) && A.back() == u32(0)) POP(A); if (A.empty()) break; u64 rm = 0; FOR_R(i, len(A)) { rm = rm * MOD + A[i]; A[i] = rm / p; rm %= p; } res.eb(rm); } reverse(all(res)); return res; } void add_power_of_2(int k) { int q = k / LOG, r = k % LOG; if (sgn == 0) sgn = 1; if (q >= len(dat)) dat.resize(q + 1); if (sgn == 1) { dat[q] += 1 << r; while (dat[q] >= MOD) { dat[q] -= MOD; if (q + 1 >= len(dat)) dat.resize(q + 2); dat[q + 1] += 1; q += 1; } } else { dat[q] += 1 << r; while (dat[q] >= MOD) { dat[q] -= MOD; if (q + 1 >= len(dat)) dat.resize(q + 2); dat[q + 1] += 1; q += 1; } } } void substract_power_of_2(int k) {} }; #ifdef FASTIO void wt(BigInteger_Binary x) { fastio::wt(x.to_string()); } #endif
#line 2 "mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { assert(n >= 0); if (k < 0 || n < k) return 0; static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 582313106}; if (mod == 1012924417) return {21, 368093570}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 2 "mod/mod_inv.hpp" // long でも大丈夫 // (val * x - 1) が mod の倍数になるようにする // 特に mod=0 なら x=0 が満たす ll mod_inv(ll val, ll mod) { if (mod == 0) return 0; mod = abs(mod); val %= mod; if (val < 0) val += mod; ll a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u; } #line 2 "mod/crt3.hpp" constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) { a %= mod; u64 res = 1; FOR(32) { if (n & 1) res = res * a % mod; a = a * a % mod, n /= 2; } return res; } template <typename T, u32 p0, u32 p1> T CRT2(u64 a0, u64 a1) { static_assert(p0 < p1); static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1); u64 c = (a1 - a0 + p1) * x0_1 % p1; return a0 + c * p0; } template <typename T, u32 p0, u32 p1, u32 p2> T CRT3(u64 a0, u64 a1, u64 a2) { static_assert(p0 < p1 && p1 < p2); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 p01 = u64(p0) * p1; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; return T(ans_1) + T(c) * T(p01); } template <typename T, u32 p0, u32 p1, u32 p2, u32 p3> T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) { static_assert(p0 < p1 && p1 < p2 && p2 < p3); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3); static constexpr u64 p01 = u64(p0) * p1; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; u128 ans_2 = ans_1 + c * static_cast<u128>(p01); c = (a3 - ans_2 % p3 + p3) * x3 % p3; return T(ans_2) + T(c) * T(p01) * T(p2); } template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4> T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) { static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3); static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4); static constexpr u64 p01 = u64(p0) * p1; static constexpr u64 p23 = u64(p2) * p3; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; u128 ans_2 = ans_1 + c * static_cast<u128>(p01); c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3; u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01; c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4; return T(ans_3) + T(c) * T(p01) * T(p23); } #line 2 "poly/convolution_naive.hpp" template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr> vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) { int n = int(a.size()), m = int(b.size()); if (n > m) return convolution_naive<T>(b, a); if (n == 0) return {}; vector<T> ans(n + m - 1); FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j]; return ans; } template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr> vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) { int n = int(a.size()), m = int(b.size()); if (n > m) return convolution_naive<T>(b, a); if (n == 0) return {}; vc<T> ans(n + m - 1); if (n <= 16 && (T::get_mod() < (1 << 30))) { for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); u64 sm = 0; for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); } ans[k] = sm; } } else { for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); u128 sm = 0; for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); } ans[k] = T::raw(sm % T::get_mod()); } } return ans; } #line 2 "poly/convolution_karatsuba.hpp" // 任意の環でできる template <typename T> vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) { const int thresh = 30; if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g); int n = max(len(f), len(g)); int m = ceil(n, 2); vc<T> f1, f2, g1, g2; if (len(f) < m) f1 = f; if (len(f) >= m) f1 = {f.begin(), f.begin() + m}; if (len(f) >= m) f2 = {f.begin() + m, f.end()}; if (len(g) < m) g1 = g; if (len(g) >= m) g1 = {g.begin(), g.begin() + m}; if (len(g) >= m) g2 = {g.begin() + m, g.end()}; vc<T> a = convolution_karatsuba(f1, g1); vc<T> b = convolution_karatsuba(f2, g2); FOR(i, len(f2)) f1[i] += f2[i]; FOR(i, len(g2)) g1[i] += g2[i]; vc<T> c = convolution_karatsuba(f1, g1); vc<T> F(len(f) + len(g) - 1); assert(2 * m + len(b) <= len(F)); FOR(i, len(a)) F[i] += a[i], c[i] -= a[i]; FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i]; if (c.back() == T(0)) c.pop_back(); FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i]; return F; } #line 2 "poly/ntt.hpp" template <class mint> void ntt(vector<mint>& a, bool inverse) { assert(mint::can_ntt()); const int rank2 = mint::ntt_info().fi; const int mod = mint::get_mod(); static array<mint, 30> root, iroot; static array<mint, 30> rate2, irate2; static array<mint, 30> rate3, irate3; assert(rank2 != -1 && len(a) <= (1 << max(0, rank2))); static bool prepared = 0; if (!prepared) { prepared = 1; root[rank2] = mint::ntt_info().se; iroot[rank2] = mint(1) / root[rank2]; FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } int n = int(a.size()); int h = topbit(n); assert(n == 1 << h); if (!inverse) { int len = 0; while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; FOR(s, 1 << len) { int offset = s << (h - len); FOR(i, p) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } rot *= rate2[topbit(~s & -~s)]; } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { u64 mod2 = u64(mod) * mod; u64 a0 = a[i + offset].val; u64 a1 = u64(a[i + offset + p].val) * rot.val; u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val; u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val; u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val; u64 na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } rot *= rate3[topbit(~s & -~s)]; } len += 2; } } } else { mint coef = mint(1) / mint(len(a)); FOR(i, len(a)) a[i] *= coef; int len = h; while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; FOR(s, 1 << (len - 1)) { int offset = s << (h - len + 1); FOR(i, p) { u64 l = a[i + offset].val; u64 r = a[i + offset + p].val; a[i + offset] = l + r; a[i + offset + p] = (mod + l - r) * irot.val; } irot *= irate2[topbit(~s & -~s)]; } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = iroot[2]; FOR(s, (1 << (len - 2))) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { u64 a0 = a[i + offset + 0 * p].val; u64 a1 = a[i + offset + 1 * p].val; u64 a2 = a[i + offset + 2 * p].val; u64 a3 = a[i + offset + 3 * p].val; u64 x = (mod + a2 - a3) * iimag.val % mod; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val; a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val; a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val; } irot *= irate3[topbit(~s & -~s)]; } len -= 2; } } } } #line 8 "poly/convolution.hpp" template <class mint> vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) { if (a.empty() || b.empty()) return {}; int n = int(a.size()), m = int(b.size()); int sz = 1; while (sz < n + m - 1) sz *= 2; // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。 if ((n + m - 3) <= sz / 2) { auto a_last = a.back(), b_last = b.back(); a.pop_back(), b.pop_back(); auto c = convolution(a, b); c.resize(n + m - 1); c[n + m - 2] = a_last * b_last; FOR(i, len(a)) c[i + len(b)] += a[i] * b_last; FOR(i, len(b)) c[i + len(a)] += b[i] * a_last; return c; } a.resize(sz), b.resize(sz); bool same = a == b; ntt(a, 0); if (same) { b = a; } else { ntt(b, 0); } FOR(i, sz) a[i] *= b[i]; ntt(a, 1); a.resize(n + m - 1); return a; } template <typename mint> vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; static constexpr int p0 = 167772161; static constexpr int p1 = 469762049; static constexpr int p2 = 754974721; using mint0 = modint<p0>; using mint1 = modint<p1>; using mint2 = modint<p2>; vc<mint0> a0(n), b0(m); vc<mint1> a1(n), b1(m); vc<mint2> a2(n), b2(m); FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val; FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val; auto c0 = convolution_ntt<mint0>(a0, b0); auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); vc<mint> c(len(c0)); FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); } return c; } vector<ll> convolution(vector<ll> a, vector<ll> b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 2500) return convolution_naive(a, b); ll mi_a = MIN(a), mi_b = MIN(b); for (auto& x: a) x -= mi_a; for (auto& x: b) x -= mi_b; assert(MAX(a) * MAX(b) <= 1e18); auto Ac = cumsum<ll>(a), Bc = cumsum<ll>(b); vi res(n + m - 1); for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); res[k] += (t - s) * mi_a * mi_b; res[k] += mi_a * (Bc[k - s + 1] - Bc[k - t + 1]); res[k] += mi_b * (Ac[t] - Ac[s]); } static constexpr u32 MOD1 = 1004535809; static constexpr u32 MOD2 = 1012924417; using mint1 = modint<MOD1>; using mint2 = modint<MOD2>; vc<mint1> a1(n), b1(m); vc<mint2> a2(n), b2(m); FOR(i, n) a1[i] = a[i], a2[i] = a[i]; FOR(i, m) b1[i] = b[i], b2[i] = b[i]; auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); FOR(i, n + m - 1) { res[i] += CRT2<u64, MOD1, MOD2>(c1[i].val, c2[i].val); } return res; } template <typename mint> vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (mint::can_ntt()) { if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b); return convolution_ntt(a, b); } if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b); return convolution_garner(a, b); } #line 2 "bigint/binary.hpp" struct BigInteger_Binary { static constexpr int LOG = 30; static constexpr int MOD = 1 << LOG; using bint = BigInteger_Binary; int sgn; vc<int> dat; BigInteger_Binary() : sgn(0) {} BigInteger_Binary(i128 val) { if (val == 0) { sgn = 0; return; } sgn = 1; if (val < 0) sgn = -1, val = -val; while (val > 0) { dat.eb(val % MOD); val /= MOD; } } BigInteger_Binary(string s) { assert(!s.empty()); sgn = 1; if (s[0] == '-') { sgn = -1; s.erase(s.begin()); assert(!s.empty()); } if (s[0] == '0') { sgn = 0; return; } reverse(all(s)); int n = len(s); int m = ceil(n, LOG); dat.assign(m, 0); FOR(i, n) { dat[i / LOG] += ((s[i] - '0') << (i % LOG)); } } bint &operator=(const bint &p) { sgn = p.sgn; dat = p.dat; return *this; } bool operator<(const bint &p) const { if (sgn != p.sgn) return sgn < p.sgn; if (sgn == 0) return false; if (len(dat) != len(p.dat)) { if (sgn == 1) return len(dat) < len(p.dat); if (sgn == -1) return len(dat) > len(p.dat); } FOR_R(i, len(dat)) { if (dat[i] == p.dat[i]) continue; if (sgn == 1) return dat[i] < p.dat[i]; if (sgn == -1) return dat[i] > p.dat[i]; } return false; } bool operator>(const bint &p) const { return p < *this; } bool operator<=(const bint &p) const { return !(*this > p); } bool operator>=(const bint &p) const { return !(*this < p); } bint &operator+=(const bint p) { if (sgn == 0) { return *this = p; } if (p.sgn == 0) { return *this; } if (sgn != p.sgn) { *this -= (-p); return *this; } int n = max(len(dat), len(p.dat)); dat.resize(n + 1); FOR(i, n) { if (i < len(p.dat)) dat[i] += p.dat[i]; if (dat[i] >= MOD) dat[i] -= MOD, dat[i + 1] += 1; } while (len(dat) && dat.back() == 0) dat.pop_back(); return *this; } bint &operator-=(const bint p) { if (sgn == 0) return *this = (-p); if (p.sgn == 0) return *this; if (sgn != p.sgn) { *this += (-p); return *this; } if ((sgn == 1 && *this < p) || (sgn == -1 && *this > p)) { *this = p - *this; sgn = -sgn; return *this; } FOR(i, len(p.dat)) { dat[i] -= p.dat[i]; } FOR(i, len(dat) - 1) { if (dat[i] < 0) dat[i] += MOD, dat[i + 1] -= 1; } while (len(dat) && dat.back() == 0) { dat.pop_back(); } if (dat.empty()) sgn = 0; return *this; } bint &operator*=(const bint &p) { sgn *= p.sgn; dat = convolve(dat, p.dat); return *this; } // bint &operator/=(const bint &p) { return *this; } bint operator-() const { bint p = *this; p.sgn *= -1; return p; } bint operator+(const bint &p) const { return bint(*this) += p; } bint operator-(const bint &p) const { return bint(*this) -= p; } bint operator*(const bint &p) const { return bint(*this) *= p; } // bint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const bint &p) const { return (sgn == p.sgn && dat == p.dat); } bool operator!=(const bint &p) const { return (sgn != p.sgn || dat != p.dat); } vc<int> convolve(const vc<int> &a, const vc<int> &b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 500) { vc<int> c(n + m - 1); u128 x = 0; FOR(k, n + m - 1) { int s = max<int>(0, k + 1 - m), t = min<int>(k, n - 1); FOR(i, s, t + 1) { x += u64(a[i]) * b[k - i]; } c[k] = x % MOD, x = x / MOD; } while (x > 0) { c.eb(x % MOD), x = x / MOD; } return c; } static constexpr int p0 = 167772161; static constexpr int p1 = 469762049; static constexpr int p2 = 754974721; using mint0 = modint<p0>; using mint1 = modint<p1>; using mint2 = modint<p2>; vc<mint0> a0(all(a)), b0(all(b)); vc<mint1> a1(all(a)), b1(all(b)); vc<mint2> a2(all(a)), b2(all(b)); auto c0 = convolution_ntt<mint0>(a0, b0); auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); vc<int> c(len(c0)); u128 x = 0; FOR(i, n + m - 1) { x += CRT3<u128, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); c[i] = x % MOD, x = x / MOD; } while (x) { c.eb(x % MOD), x = x / MOD; } return c; } string to_string() { if (dat.empty()) return "0"; string s; for (int x: dat) { FOR(LOG) { s += '0' + (x & 1); x /= 2; } } while (s.back() == '0') s.pop_back(); if (sgn == -1) s += '-'; reverse(all(s)); return s; } string to_decimal_string() { assert(0); return ""; } // https://codeforces.com/contest/477/problem/D pair<bint, int> divmod(int p) { assert(dat.empty() || sgn == 1); vc<int> after; ll rm = 0; FOR_R(i, len(dat)) { rm = rm * MOD + dat[i]; after.eb(rm / p); rm = rm % p; } reverse(all(after)); while (len(after) && after.back() == 0) POP(after); bint q; q.sgn = 1; q.dat = after; return {q, rm}; } vc<int> base_p_representation(int p) { vc<u32> A(all(dat)); vc<int> res; while (1) { while (len(A) && A.back() == u32(0)) POP(A); if (A.empty()) break; u64 rm = 0; FOR_R(i, len(A)) { rm = rm * MOD + A[i]; A[i] = rm / p; rm %= p; } res.eb(rm); } reverse(all(res)); return res; } void add_power_of_2(int k) { int q = k / LOG, r = k % LOG; if (sgn == 0) sgn = 1; if (q >= len(dat)) dat.resize(q + 1); if (sgn == 1) { dat[q] += 1 << r; while (dat[q] >= MOD) { dat[q] -= MOD; if (q + 1 >= len(dat)) dat.resize(q + 2); dat[q + 1] += 1; q += 1; } } else { dat[q] += 1 << r; while (dat[q] >= MOD) { dat[q] -= MOD; if (q + 1 >= len(dat)) dat.resize(q + 2); dat[q + 1] += 1; q += 1; } } } void substract_power_of_2(int k) {} }; #ifdef FASTIO void wt(BigInteger_Binary x) { fastio::wt(x.to_string()); } #endif